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ABSTRACT

Calibrating digital twins is a challenging tasks that various methodologies have been used to address.
Bayesian Optimization is a prominent tool for this purpose albeit with computational limitations. We
propose root-finding strategies within the Bayesian Optimization framework that is tailored for digital twin
calibration task. Employing root-finding scheme introduces new acquisition functions and offer unique
advantages over traditional minimization strategy, particularly when using a continuous surrogate model.
We demonstrate our findings through a range of motivating examples and calibration tasks.

1 INTRODUCTION

Digital twins (DT) are emerging technologies that enable users to monitor and optimize the real-world (RW)
problems in real time. The idea behind the DT is that, by replicating the RW with a virtual representation,
users can explore various alternative actions in the system, which facilitates decision-making processes.
Examples of use cases of DT are abundant in manufacturing systems (VanDerHorn and Mahadevan 2021),
hospital management (Peng et al. 2020) or predicting the equipments’ condition in space programs (Liu
et al. 2021). Despite the noticeable achievements, ensuring the fidelity of these virtual models in mirroring
the RW is a critical challenge that persists. Since the discrepancies between the DT and RW can severely
impact the reliability of the subsequent decision-making, proper calibration techniques are essential. In
this paper we propose new ideas to more effectively calibrate DT when the real-time collections of RW
system performance does not provide more than single observations at each state.

1.1 Problem Statement

Following the notation by Rhodes-Leader and Nelson (2023), assume a DT is used to make decisions at
times tj , j = 1, . . . , J . At each time, the state of the RW is θcj ∈ Θ (among a known set of possible states
Θ), and the corresponding set of feasible actions that users can take is x ∈ X (θcj). In the remainder of this
paper, we will omit x from the notations since decision-making with DT is not in the scope of this paper.
The state θcj can be unobservable and might be represented either as a vector or a scalar value, depending
on the specific context of the problem. Let hc(θcj) be the fixed, observed performance measure of the RW
system at state θcj . This is a realized quantity of the random variable Hc(θcj) that represents the system
performance following an unknown probability distribution.

We assume to have a DT in our disposal that is well-constructed to spew out random outputs H(θj)
where θj denotes the (controllable) state of the DT. We assume that once θcj ≈ θj , we can expect somewhat
similar behavior of the two systems such that hc(θcj) − H(θj) ∼ N (0, ε) for small variance ε > 0. A
typical approach for calibration is to match the expected performance in RW, i.e., E[Hc(θc)] with that of a
simulation model E[H(θ)], where each expectation is with respect to the corresponding random variable’s
probability distribution. But in DT applications, often, the calibration has to happen in real-time and we do
not have access to more than one observation in RW. Hence, in lieu of minθj∈Θ d(E[Hc(θcj)],E[H(θj)]),
where d : R× R → R is the metric of discrepancy between two real-valued quantities (see Section 1.3),
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we seek to
min
θj∈Θ

f(θj) := d(hc(θcj),E[H(θj)]). (1)

We, therefore, define our calibration task as finding a state for the DT that results in the smallest discrepancy
measure when adapted in DT, i.e., θ∗j that minimizes the objective function in (1). Within this context, we
assume that the state is not changed during the calibration task, as in practice, a practitioner may calibrate
DT for every time interval [tj−1, tj) to align with the evolving state of the RW. The expected performance
of the DT can be estimated by hn(θj) following n independent and identically distributed (iid) DT runs.
This reduces problem (1) to a sample average approximation (SAA) variant, i.e.,

min
θj∈Θ

fn(θj) := d(hc(θcj), hn(θj)). (2)

In the remainder of the paper, we drop the subscript j for the j-th state of the system but take into account
the possibility of the time interval for calibration to be small, and therefore, a need for speedy calibration.

1.2 Metamodeling for Calibration

Various approaches have been explored for calibration, each with unique advantages. In this paper, we
consider the case where the complexity of the DT imposes significant challenges to conduct iterative
analysis, or due to the small amount of allowed time interval, practitioner has to make only a few or no
simulation at each θ̂. This means we either let n = 1 or n = 0 for some of the θ̂ values that we explore.
In this setting, employing a simulation metamodeling is a desirable option to draw an approximation to
the response surface of f(θ) (Staum 2009). One popular choice for such metamodeling is a Gaussian
Process Regression (GPR), often referred to as kriging in Geostatistics area and surrogate modeling in
the optimization domain (Yang et al. 2019). We shall use the term metamodeling and surrogate model
interchangeably throughout the paper. GPR’s capability of addressing complex structures (e.g., non-convex
functions) or noisy observations also makes it a popular choice for optimization.

When using metamodels for estimating the response surface of the objective function, there may be
time constraints that may restrain us from running the DT multiple times for each θ that is evaluated. We
specifically consider extreme limitations where only a single DT observation is being collected at each θ,
denoted by h(θ). Practically speaking, this situation arises when exploring various θs is more preferred
than exploiting limited points due to less concerns about the noise and its heterogeneity, In this setting,
stochastic kriging (Staum 2009) will not be easy to apply given that we do not have access to sample
variance estimates to augment the covariance function with stochastic noise. As a result, we are forced to
yet again alter the objective function from (2) to

min
θ∈Θ

f̃(θ) := d(hc(θc), h(θ)), (3)

where, under the assumption that we have control over the random numbers used in DT and can apply
common random numbers (CRN) throughout the process, the problem reduces to calibrating the sample path
objective function instead. Crucially, in this set-up, we have removed the intrinsic variability by fixing the
random number stream and exploring a single realization of the random function F (θ) := d(hc(θc), H(θ)).
This approach has been adopted by Wang (2021) among others and resembles path-wise optimization or
SAA with n = 1.

With such surrogate models, a widely appreciated solution method for optimization is Bayesian
Optimization (BO). However, BO, like many other optimization algorithms that primarily rely on their
surrogate model, is not expected to perform as desired when the surrogate model fails to capture the
underlying behavior of the function. Often, this failure is due to the inappropriate assumptions and model
misspecification. We shall see some of the misusage cases of employing surrogate models throughout
the upcoming sections. Despite that, when appropriately deployed, metamodeling would be a reasonable
option for the calibration task.
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1.3 Minimization or Root-finding?

When framing the calibration task as an optimization problem, defining a proper discrepancy measure
is indeed a crucial task. Some popular choice for the discrepancy measure include root mean squared
percentage error (RMPSE) (Sha et al. 2020), mean squared error (MSE) (Schultz and Sokolov 2018)
(Zhan et al. 2022), or some logarithmic form of squared error (Chakrabarty et al. 2023). When multiple
observations of both Hc(θc) and H(θ) are available that correspond to the same number of iid inputs to
RW and DT, then the discrepancy can be posed as an empirical risk minimization, whereby the above L2

type loss functions are reasonable.
Instead, consider the case where hc(θc) and h(θ), as defined above, are summary statistics of the

performance measure of interests, such as the average sojourn time of multiple products in queuing system,
but without the detailed number of outputs corresponding to iid inputs. We assume that there exists at
least one θ̃∗ that makes f̃(θ̃∗) = hc(θc) − h(θ̃∗) = 0. When dealing with such problems, instead of
minimizing the discrepancy, one may consider finding the roots of the difference function. Often, the
root-finding itself can be reformulated as a minimization problem. For instance, if the function f̃(·) is
a strictly monotonic function and has a single root, its root can be found via minθ∈Θ |f̃(θ)|. However,
such transformation has to be carefully handled, as depending on the functional structure or optimization
algorithm we use, it may introduce additional challenges to the optimization process. In this paper, we
examine the applicability of such transformation, particularly when employing a continuous surrogate
model. Given that we use metamodeling for contexts where observations are limited, we find that this
transformation to the observed discrepancy presents additional challenges and therefore not recommend
it. We suggest viewing the calibration task as a root finding; this entails finding the roots of the predicted
discrepancy function, denoted by f̂(θ) that is often done via minθ∈Θ |f̂(θ)|; we argue that this idea
improves calibration results within a fixed computational budget. In this paper we focus an implementation
of this idea within the BO context. To this end, we derive new variants of famous acquisition functions
and present a tailored approach that leverages continuity of sample paths to reduce the search space from
each new solutions will be sampled.

To start, we provide some motivating examples that justify our proposition for the use of root-finding
in Section 2. We then briefly review BO covering its basic principles and components in Section 3. In
Section 4, we introduce BO combined with a root-finding scheme, followed by our proposed approach to
effectively accelerate the search. We implement the proposed approaches in Section 5 and compare with
the benchmarks across several calibration tasks. We then conclude in Section 6 leaving the reader with
several open questions that require further explorations.

2 MOTIVATING EXAMPLES

Before delving into BO and its components, we demonstrate our motivation by Figure 1. In this figure,
the true value θ that yields the best calibration is depicted on the x-axis by the star icon between the two
values [a, b]. Suppose in evaluating function f(θ) we see that the DT generates an output larger than that
of the RW at θ = a and smaller at θ = b, hence f(a)f(b) < 0. According to the Bolzano’s theorem, at
least one f(c) = 0, c ∈ [a, b] is assured within the observed interval. In the standard BO setup, employing
a minimization strategy, requires transforming the function into a one-sided domain (e.g., using absolute
value transformation in the right panel) and we shall refer to this as a positivization.

Suppose a GPR is fitted to the positivized function values |f(θ)|. Then the sampling process (of
solutions) may escape this interval as the positivized function values do not signal that estimates in this
interval may be smaller than the others. If GPR was instead fitted to the original f(θ), then the sampling
process would likely concentrate on this interval to find a root of the function (which is where the discrepancy
is 0), as the continuity of GPR inherently assures the existence of a root in this interval.

Another case in point is related to studies in which DT is a simulation model, such as Discrete Event
Simulation (DES) (Agalianos et al. 2020). One can generate several, say n, iid DT outputs at the fixed θ
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Figure 1: Fitted GPR on original function (left) and positivized case (right)

to estimate E[H(θ)] with

hn(θ) =
1

n

n∑
i=1

Hi(θj) ∼ N (µH(θ), n−1σ2
H(θ)) (4)

via Central Limit Theorem (CLT), leading to as estimate of the “raw” discrepancy measure

fn(θ) := hc(θc)− hn(θ) ∼ N (hc(θc)− µH(θ), n−1σ2
H(θ)) (5)

that preserves the statistical characteristic of the outputs (normality). On the other hand, positivization via
absolute or squared transform would alter the distribution of the discrepancy measure to folded-normal and
chi-square distribution, respectively. When employing GPR, there is an underlying belief that the objective
function at each θ follows a normal distribution, which will be violated with such positivization.

Based on the insights above, we propose to solve a calibration problem with a root finding perspective
in mind rather than searching for the minimum of the positivized discrepancy. We will delve into our
proposed modifications to the components in standard BO after briefly reviewing those next.

3 BAYESIAN OPTIMIZATION FOR CALIBRATION

Following the description of objective function in Section 1, suppose we adopt standard BO framework
that solves the optimization problem (for calibration) that is of the form min

θ∈Θ
|f̃(θ)|, where Θ ⊂ Rd and

f̃ : Θ → R is continuous and available through a deterministic black box and therefore with limited
structural knowledge. Often one obtains noisy observations of f via a stochastic simulation but in this
paper, we limit our scope to the sample-path optimization problem (3) and hence deem the objective
function deterministic.

The core of the BO entails two main components. The first component is the surrogate model, typically
a GPR, which approximates the structure of the objective function in a probabilistic-manner. Building
upon well-defined Bayesian properties, after visiting m solutions X = [θi ∈ Rd, i = 1, 2, · · · ,m] with
corresponding function values Y = [|f̃(θ1)|, |f̃(θ2)|, · · · , |f̃(θm)|], the estimates of the function at an
unseen θ′, f̂(θ′|X), can be formulated as

f̂(θ′|X) ∼ N (µ(θ′), σ2(θ′)), (6)

µ(θ′) = K(θ′, X; l)[K(X,X; l) + σmI]−1Y,

σ2(θ′) = K(θ′, θ′; l)−K(θ′, X; l) [K(X,X; l) + σmI]−1K(θ′, X; l).
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Note that µ and σ2, i.e., mean and covariance functions here are different from µH and σ2
H functions defined

for the stochastic simulation in (4) and (5). Here, K(w, v; l) ∈ Rm×n is the kernel matrix that defines
the covariance function between w ∈ Rm×d and v ∈ Rn×d, with Ka,b(w, v; l) = exp

(
∥wa−vb∥2

2l2

)
using

wa ∈ R1×d and vb ∈ R1×d as the ath and bth row of matrices w and v, respectively. I is an identity matrix
combined with σm which represents the noise term to avoid the overfitting considering uncertainty among
observations from the function (RW) (Pedregosa et al. 2011). While the predictor (6) resembles stochastic
kriging, we note that here the prediction error f̂(θ′|X)− f̃(θ′) only represents extrinsic uncertainty, that is
the uncertainty about the response surface at a point not yet visited; in other words, (intrinsic) stochastic
uncertainty is not included here.

The second component is the the acquisition function that guides the optimization process to sample
the next solution θ in a bid to approach optimality. The idea behind the acquisition function is to convert
the probabilistic prediction of the fitted surrogate model into a quantifiable scalar score, which then can be
used to identify the most promising areas for further exploration. Some well-known acquisition functions,
namely, upper confidence bound (UCB), probability of improvement (PI), and expected improvement (EI),
are summarized in Table 1. At each moment of drawing a new sample, θ̂∗ represents the best solution
found so far, Φ(·) and φ(·) denote the cdf and pdf of standard normal distribution.

Table 1: Analytical expressions of common acquisition functions within noise-free settings

Acquisition function Analytical expression

UCB(θ) µ(θ) + λσ(θ)

PI(θ) Φ
(
|f̃(θ̂∗)|−µ(θ)

σ(θ)

)
EI(θ) (|f̃(θ̂∗)| − µ(θ))Φ

(
|f̃(θ̂∗|)−µ(θ)

σ(θ)

)
+ σ(θ)φ

(
|f̃(θ̂∗)|−µ(θ)

σ(θ)

)
In the UCB method, exploration and exploitation are balanced with the parameter λ > 0. When λ is

close to 0, UCB prioritizes sampling in regions where the mean estimate is minimized, potentially exploiting
the good regions that are discovered. In contrast, large λ makes exploration more preferred, encouraging
sampling in regions with more uncertainty, even if the estimated mean function value is not as high. In
the PI method, instead of solely utilizing the mean and variance of the surrogate model, the probability
of having a better estimate than the current best known value is considered. Since the function estimates
follow a normal distribution, the reparametrization trick

f̂(θ|X) = µ(θ) + σ(θ)Z with Z ∼ N (0, 1), (7)

yields the expression in Table 1. In the EI approach, instead of relying on the probability, the expected
magnitude of improvements over the best known solution is considered. Similarly, using the reparametrization
trick, analytical expression is also attainable. Not every acquisition function provides a closed-from
expression. When a closed-form expression is unavailable, alternative approaches like Monte Carlo-based
methods are often considered (Balandat et al. 2020).

4 BO WITH ROOT-FINDING STRATEGY

In this section, we modify BO in two ways. In the first component that fitting occurs, unlike the standard BO
for calibration, we fit the GPR to the original function values rather than to |f̃(θ)|. In the second component,
we solve the problem with a root finding rather than a minimization. It is important to note, while the
objective of finding min

θ∈Θ
|f̃(θ)| is identical, standard BO calibration frames the problem where observations

are positivized, root-finding retains the observations. This means rather than a standard calibration problem
where observations are positivized, here we propose to keep the observations as they are but positivize the
predictions instead. Hence, instead of searching for a new θ whose f̂(θ) ≤ f̃(θ̂∗) with high probability,
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we search for a θ whose |f̂(θ)| ≤ |f̃(θ̂∗)| with high probability. For this component, we derive the new
acquisition functions and signify them with subscript “RF” to indicate the use of root-finding. We assume
that the positive and negative sign in the function value is equally important. When this assumption does
not hold, one can introduce a weighting term if desired. We will begin the new acquisition function variants
by discussing the UCB method with the proposed modification:

UCBRF(θ) = |µ(θ)|+ λσ(θ).

In this modification, UCBRF simply takes the absolute value of the mean prediction µ(θ) and is added
with user-defined parameter λ and the prediction standard deviation σ(θ) Similar to UCB, λ governs the
balance between the exploration and exploitation in UCBRF. As the expression of UCBRF is similar to
UCB, we can expect almost identical computational effort for this variants.

Now we present the modifications of improvement-based acquisition functions. Within the root-finding
scheme, the “improvement” needs to quantify the improvement in terms of the amount that the new solution
might reduce the distance to zero. Accordingly, we define the improvement event in root-finding as

IRF(θ) = {|f̂(θ)| ≤ |f̃(θ̂∗)|}.

Figure 2: Probability of improvement defined in the minimization (left) and root-finding (right) context

Figure 2 illustrates the distinct improvement defined in this context. In the typical minimization strategy,
improvement is defined as the portion of having smaller values than f̃(θ̂∗) in the predictive distribution,
whereas the improvement is bounded within |f̃(θ̂∗)| and −|f̃(θ̂∗)| for the IRF case. Based on this, we
derive PIRF using reparameterization trick (7). In the following derivation, recall that f̃(θ∗) is the best
observed function value while f̂(θ) is the predicted function value at a θ whose objective function is not
yet evaluated.

PIRF(θ) = P (IRF) = P
(
−|f̃(θ̂∗)| ≤ µ(θ) + σ(θ)Z ≤ |f̃(θ̂∗)|

)
= Φ(zub(θ))− Φ (zlb(θ)) ,

where zub(θ) =
|f̃(θ̂∗)|−µ(θ)

σ(θ) and zlb(θ) =
−|f̃(θ̂∗)|−µ(θ)

σ(θ) . Similarly, for the EIRF, we can write

EIRF(θ) =

∫ ∞

−∞
IRF(θ)φ(z)dz =

∫ zub(θ)

zlb(θ)

(
|f̃(θ̂∗)| − |µ(θ) + σ(θ)z|

)
φ(z)dz

= |f̃(θ̂∗)|(Φ(zub(θ))− Φ(zlb(θ)))−
∫ zub(θ)

zlb(θ)
|µ(θ) + σ(θ)z|φ(z)dz
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= |f̃(θ̂∗)|(Φ(zub(θ))− Φ(zlb(θ)))−
∫ zub(θ)

zthr(θ)
(µ(θ) + σ(θ)z)φ(z)dz

+

∫ zthr(θ)

zlb(θ)
(µ(θ) + σ(θ)z)φ(z)dz

= |f̃(θ̂∗)|(Φ(zub(θ))− Φ(zlb(θ))) + µ(θ)(2Φ(zthr(θ))− Φ(zlb(θ))− Φ(zub(θ)))

+ σ(θ)(2φ(zthr(θ))− φ(zlb(θ))− φ(zub(θ))),

where zthr(θ) = −µ(θ)/σ(θ).
Moving forward, we now discuss the internal optimization process in BO. Once the acquisition function

is chosen, BO needs to seek the maximum value of this function to determine the next observation point
at each iteration. A typical approach employed by many practitioners is multi-starting an efficient locally
convergent solver such as L-BFGS-B (Frazier 2018) with derivative-free schemes. For our root-finding
acquisition functions, first-order derivatives are accessible for all methods and their usage is generally
recommended (due to the space limit, we omit their derivatives’ closed form expressions).

Figure 3: Bounding the search space where sign of the function value changes in 1D (left) and 2D (right).

Moreover, root finding offers an additional advantage to accelerate maximization of the acquisition
function. Recall we are using a continuous surrogate model. Due to continuity, once we observe opposite
signs of the function values, our fitted GPR inherently passes through the root points, meaning the maximum
acquisition function value is guaranteed to exist within an interval between the closest points with opposite
function values. Hence, rather than arbitrarily allocating the computational effort across the entire search
space Θ, we may only need to focus on these regions, as depicted in Figure 3. That is, without any prior
knowledge of the search space, aforementioned multi-start strategy can be inefficient, particularly for the
high-dimensional space. As the internal optimization process is the most computationally demanding part
in BO (with frequent computation in (6)), effectively narrowing down the search space is indeed a crucial
task for the scalability of BO.

To generalize this process, we introduce the Reduced Search Space (RSS) framework, as outlined in
Algorithm 1. Here, we define V (·, ·) to represent the hypervolume of the region bounded by two points
with a differing sign of the function value. This hypervolume is computed based on the spatial distance
across the dimensions and the function values. Intuitively, the smaller the hypervolume, the more likely we
are to find the roots and maximum acquisition function value within the limited computational resources.

It is important to note that, while RSS is devised to narrow down the search space, RSS does not
consider the redundancy between the regions. Numerous questions remain open in this topic, such as
determining the optimal number of regions, efficiently allocating the computational burden to the selected
regions, or minimizing the redundancy between the regions. In this paper, we have only considered the
case of γ = 1, pursuing the most promising (smallest) region, as we expect the fitted GPR is relatively
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Algorithm 1: Reduced Search Space (RSS)
Input : observed solutions: X ∈ Rm×d, observed function values: Y ∈ Rm, number of targeted regions: γ.
Output: γ subregions to search within

Initialize D as an empty list to store pairs (i, j) with sign changes;

for each pair (i, j), i < j do
if f̃(θi) · f̃(θj) < 0 then

Append (i, j) to D;

Compute hypervolume V (θi, θj) =
(∏d

l=1 |θ
i
l − θjl |

)
× |f̃(θi)− f̃(θj)|, where θab represents the bth

element of the ath observed solution;
end

end
Sort pairs in D by V (θi, θj) and return γ pairs with the minimum hypervolume;

smooth with the use of rbf kernel. However, in the case of using a more complex kernel such as Matérn
kernel, increasing the value of γ would be a more plausible choice to capture more intricate structure of
the function.

5 EXPERIMENT

In this section, we conduct experiments to compare the calibration accuracy of the proposed BO with root
finding compared to standard BO. We compare the proposed BO that fits a surrogate model to the signed
discrepancy but uses acquisition functions that tackle root finding versus the standard BO when the surrogate
model is fitted to either the absolute or squared discrepancy. In each experiment, we conduct 100 independent
macro-replications that each are allowed to use only 100 observations. In the implementation detail, we
utilize the GPR configuration used by Pedregosa et al. (2011). Moreover, to ensure the reproducibility
and fair comparison, each method uses the same pseudo-random seed and fixed starting point at each
macro-replication. For the internal optimization process, we employ 50 multi-start L-BFGS-B that is run
up to 10 iterations, following the set-up by Virtanen et al. (2020) and using the first-derivative of each
method; see the appendix for the derivations.

5.1 2D Synthetic Data

Suppose our DT model consists of two governing parameters, and the deviation from the RW follows the
modified Himmelblau’s function (Himmelblau 1972):

f̃(θ1, θ2) = log2
(
(θ21 + θ2 − 5)2 + (θ1 + θ22 − 3)2

)
− 1, (8)

for θ1, θ2 ∈ [−5, 5]. Here, our optimization objective is to identify the optimal parameter set (state) that
minimizes the discrepancy. Figure 4 summarizes the results along with the number of observations. Each
point represents the minimum absolute function value achieved after averaging the macro-replications
that use the corresponding BO strategy for each category of acquisition functions. Notably, root-finding
approach outperforms the standard BO with minimization across cases. The RSS combined root-finding
approach more resoundingly improves the convergence thanks to its better guided sampling process.

To provide further insights into this result, we present Figure 5, which displays the sampling trace of
each method with 10 observed solutions, all starting from the common starting point. Here, the optimal
solutions are distributed in the white borderline areas. Interestingly, standard acquisition functions with
minimization strategy spend most of their sampling for exploration. Whereas in the root-finding case,
we see the sampling trace being more exploitation-oriented right after the sign difference is captured.
We highlighted this tendency in Section 2, where discarding the sign of the observation can potentially
complicate the optimization process unless near optimal regions.
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Figure 4: Experimental results on 2D synthetic dataset

Figure 5: Sampling trace of each method after 10 observed solutions with starting point [θ1, θ2] = [2.05, 1.05].

5.2 M/M/1 Queue

In this experiment, suppose our DT imitates the RW which is an M/M/1 queue with two parameters, arrival
rate λc = 4 per hour and service rate µc = 5 per hour. Suppose we know the service rate but we don’t
know the true arrival rate in RW. Moreover, suppose we are given the average sojourn time of 1000 entities
entering the system hc(λc, µc) (in one single day) but not each individual entity’s arrival or service time.
The purpose of calibration in this example is to determine the arrival rate λ ∈ [1, 10] that matches the
1000-average sojourn time of the DT queue with that of the RW. At each λ, we only conduct a single
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replication (to mimic the time constraints and sample path optimization posed in the problem statement),
but we do this multiple times (macro-replications) to study the variability of results. We define the raw
discrepancy measure

f̃(λ) = hc(λc, µc)− h(λ, µc). (9)

Figure 6 illustrates the distribution of f̃(λ) across different arrival rates. When λ > λc, we are likely to
observe negative discrepancies as our DT presumes more frequent arrivals, resulting in longer waiting time.
Conversely, when λ < λc, DT underestimates the average waiting time and yields a positive discrepancy.

Figure 6: Distribution of discrepancy between RW and DT

Figure 7 reports the overall experimental results in M/M/1 example similar to the 2D synthetic data
example. In contrast to the previous experiment, no noticeable differences are observed comparing the
minimization and root-finding, except for the UCB case. Nevertheless, root-finding with RSS approach still
significantly outperforms all other approaches across acquisition functions both in early and last stages.

Figure 7: Experimental results on M/M/1 queue example

6 CONCLUSIONS

This paper introduces a novel approach to calibrate DT by leveraging a root-finding strategy in BO. Our
proposition is particularly valid in cases where there is a single observation from the RW and to save
time we only afford a single observation from the DT at each visited solution. In our experiments, we
empirically demonstrate the underperforming behavior of the minimization strategy particularly when using
GPR surrogate models. Our suggestion is therefore to fit GPR on the signed discrepancy values but modify
acquisition functions to find roots of the prediction function. We believe that our methodology can easily
extend to cases where multiple observations from the DT is available. On the other hand, our BO with
root-finding strategy would also be applicable in scenarios where the sign of the discrepancy imposes
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distinct meaning that affects the decision-making procedure for the practitioner, and thereby the calibration
task has to be carried out with the sign information. Lastly, we note that this topic is closely related to
the modern trends of combining local optimization strategies into BO (Eriksson et al. 2019; Nguyen et al.
2022). With the extension of this work, this root-finding based BO can be applied into finding the root of
derivatives, pursuing the local optimum of the function.

APPENDIX

In this section, we present the first-order derivatives of the proposed methods discussed in Section 4. To
do this, we first need to derive the gradient of the estimates (6). The gradient of the mean estimates can
be derived as

∂µ(θ)

∂θ
=

∂

∂θ

(
K(θ,X; l)[K(X,X; l) + σmI]−1Y

)
=

∂K(θ,X; l)

∂θ
[K(X,X; l) + σmI]−1Y

and the gradient of standard deviation is

∂σ(θ)

∂θ
=

∂

∂θ

√
σ2(θ) =

1

2
√
σ2(θ)

∂σ2(θ)

∂θ

= − 1

2
√
σ2(θ)

(
∂K(θ,X; l)

∂θ
[K(X,X; l) + σmI]−1K(X, θ; l)

+ K(θ,X; l)[K(X,X; l) + σmI]−1∂K(X, θ; l)

∂θ

)
,

where ∂K(w,v;l)
∂w = ∥w−v∥

l2
exp

(
∥w−v∥2

2l2

)
, following the notation used in Section 3. With this, the first-order

derivative of UCBRF becomes

∂

∂θ
UCBRF =

{
∂µ(θ)
∂θ + λ∂σ(θ)

∂θ , if µ(θ) > 0

−∂µ(θ)
∂θ + λ∂σ(θ)

∂θ , else

Accordingly, the first-order derivative of PIRF is

∂

∂θ
PIRF(θ) =

∂

∂θ
(Φ(zub(θ))− Φ(zlb(θ))) = φ(zub(θ))

∂zub(θ)

∂θ
− φ(zlb(θ))

∂zlb(θ)

∂θ
,

where ∂zub(θ)
∂θ =

− ∂µ(θ)
∂θ

σ(θ)−(|f̃(θ̂∗)|−µ(θ)) ∂σ(θ)
∂θ

σ2(θ)
and ∂zlb(θ)

∂θ =
− ∂µ(θ)

∂θ
σ(θ)+(|f̃(θ̂∗)|+µ(θ)) ∂σ(θ)

∂θ

σ2(θ)
. Likewise, we

derive the first order deritative of EIRF as

∂

∂θ
EIRF =

∂

∂θ
(|f̃(θ̂∗)|(Φ(zub(θ))− Φ(zlb(θ)) + µ(θ)(2Φ(zthr(θ))− Φ(zlb(θ))− Φ(zub(θ)))

− σ(θ)(2φ(zthr(θ))− φ(zlb(θ))− φ(zub(θ))))

= |f̃(θ̂∗)|
(
∂zub(θ)

∂θ
φ(zub(θ))−

∂zlb(θ)

∂θ
φ(zlb(θ))

)
+

∂µ(θ)

∂θ

(
2Φ(zthr(θ))− Φ(zlb(θ))− Φ(zub(θ))

)
+ µ(θ)

(
2
∂zthr(θ)

∂θ
φ(zthr(θ))−

∂zlb(θ)

∂θ
φ(zlb(θ))−

∂zub(θ)

∂θ
φ(zub(θ))

)
− ∂σ(θ)

∂θ
(2φ(zthr(θ))− φ(zlb(θ))− φ(zub(θ)))
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− σ(θ)

(
−2

∂zthr(θ)

∂θ

zthr(θ)√
2π

e−
z2thr(θ)

2 +
∂zlb(θ)

∂θ

zlb(θ)√
2π

e−
z2lb(θ)

2 +
∂zub(θ)

∂θ

zub(θ)√
2π

e−
z2ub(θ)

2

)
,

where ∂zthr(θ)
∂θ =

− ∂µ(θ)
∂θ

σ(θ)+µ(θ)
∂σ(θ)
∂θ

σ2(θ)
.
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