
Proceedings of the 2023 Winter Simulation Conference
C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds.

ADAPTIVE RANKING AND SELECTION BASED GENETIC ALGORITHMS FOR
DATA-DRIVEN PROBLEMS

Kimia Vahdat
Sara Shashaani

Edward P. Fitts Department of Industrial and Systems Engineering
NC State University

915 Partners Way
Raleigh, NC 27606, USA

ABSTRACT

We present ARGA–Adaptive Robust Genetic Algorithm–to optimize simulation problems with binary
variables affected by input uncertainty and Monte Carlo noise. In this method, a surviving population of
designs evolves as more information about the high-dimensional problem affected by stochasticity becomes
available. In every population, ARGA conducts a ranking and selection with a debiasing mechanism of
fitness values using fast iterated bootstraps economized with control variates. Debiasing reduces the model
risk induced by input uncertainty bias, leading to a more accurate ranking of the current surviving designs.
Given the double loop of function evaluations, we incorporate an adaptive budget allocation throughout the
search only if the current population’s proximity to optimality signals the need for a smaller standard error.
In that case, we identify where to allocate additional replications: the input model of a current surviving
design that is most responsible for risk. The empirical results with a fixed optimization budget demonstrate
that ARGA obtains significantly better solutions in a feature selection problem in various datasets.

1 INTRODUCTION

Simulation models are widely used in various fields to evaluate, compare, and choose the best system
designs or strategies based on their estimated performance. Ranking and selection (R&S) methods are
often employed to ensure computationally efficient comparison. R&S distributes simulation efforts among
different designs to achieve a predetermined confidence level for choosing the best design. There are different
ways to classify R&S procedures, but the boundaries between them are not always clear-cut (Hunter and
Nelson 2017; Pasupathy and Ghosh 2013). One way to categorize them is by their approach to ensuring
selection quality: fixed-precision or fixed-budget. The fixed-precision procedures run until they meet a
guarantee on the optimality gap between the chosen system and the actual best system. The fixed-budget
procedures aim to allocate a fixed amount of computational resources to minimize a loss function that
penalizes incorrect selection. In this paper, we employ an optimal computing budget allocation (OCBA)
during optimization that, though reminiscing the fixed-budget procedures for statistical guarantees, can
stop before reaching that maximum budget guided by an adaptive sampling philosophy.

A salient feature of our proposed method is its goal of performing R&S throughout optimization
efficiently while maintaining robustness, i.e., with consideration for model risk. An important source of
model risk is input uncertainty (IU)–the risk of misspecifying the input distribution. Traditionally, R&S
methods assume the true input distribution is known, and the inference from simulation outputs is only
affected by stochastic uncertainty (SU). However, especially with high-dimensional input data, IU can
significantly impact the inference and misguide decision-making (Corlu and Biller 2015; Song and Nelson
2019). A consequence of IU is that it may be impossible to identify the correct best design even with

Vahdat and Shashaani

infinite computing effort. In response, we explore an integration of efficient R&S methods to address
complex simulation problems affected by both SU and IU during optimization.

We compute and reduce the IU bias when input distributions are empirical CDFs of the high-dimensional
data. Our debaising procedure comes at an increased computational cost. However, the adaptive budget
allocation enables economic incorporation of the SU and IU intricacies. In this paper, we use a well-known
global binary optimization engine, the genetic algorithm (GA). Given multiple input models (generated
from bootstrapped data) for each design in the surviving population of the GA, the adaptive allocation also
entails deciding that additional replication to which design with which input model maximizes the overall
efficiency of the optimization task. Robust OCBA (R-OCBA), proposed by Gao et al. (2017), suggests
a way to link the computation and utilization of multiple input models when allocating budgets for an
estimation problem. Our proposed framework integrates R-OCBA with adaptive choice of budget size
during optimization. We weave this integrated approach into the inner dynamics of GA for decision-making
in noisy simulation environments and call the new stochastic GA–Adaptive Robust GA.

In summary, ARGA leverages (i) the iterative design generation and selection operations within GA,
(ii) a variance-reduced fast-iterated bootstrapping (FIB) technique to reduce the IU bias, and (iii) an
adaptive sampling scheme that increases the budget only when and where necessary. To our knowledge,
the current work is the first study that enables the interaction between the IU and adaptive sampling inside
an optimization regime. This work is a continuation of our previous robust estimation work (Vahdat and
Shashaani 2021; Shashaani and Vahdat 2022) to handle the stochasticity of data-driven problems. Beyond
general simulation optimization regimes, the application of this method is also on machine learning (ML),
where the ML model can be viewed as a black-box simulation. Debiasing with nonparametric input models
established in (Vahdat and Shashaani 2023) can reduce the risk when building ML models. In this paper,
we use ARGA to minimize the loss of a learner with the right choice of features in a dataset

The organization of the paper is as follows. In Section 2, we review the literature on R&S techniques,
GA, and R-OCBA. Section 3 elaborates on ARGA and provides evidence of its applicability. Lastly,
numerical results in Section 4 demonstrate the success and shortcomings of ARGA for a feature selection
problem with simulation optimization, and Section 5 concludes the paper.

2 PRELIMINARIES AND RELATED WORK

In this section, we review R&S history with budget allocation and IU, the GA processes, and existing work
in using R&S within GA. We also introduce the notations used in the remainder of the paper.

2.1 Ranking and Selection with Input Uncertainty

R&S methods are commonly used to compare designs and select the best based on expected performance
(Bechhofer 1995). Recent literature studies the implications of parameter uncertainty on subset selection
procedures and the effect of IU on identifying the best designs (Fan et al. 2020; Song et al. 2015; Wu and
Zhou 2017). Song et al. (2015) consider the impact of IU on the indifference zone parameter, whereas
Zhang and Ding (2016) propose various procedures such as the knowledge gradient policy to handle a
Bayesian R&S under IU. For a more in-depth review of the current advancements in R&S, refer to surveys
by Corlu et al. (2020) and Hong et al. (2021).

With a fixed number of designs xt, t ∈ {1, · · · ,m}, we let each design be evaluated under b input
distributions F̂ ⋆

i , i ∈ {1, · · · , b} obtained from the i−th bootstrapped dataset, to incorporate the effect of
IU on selection. The bootstrapped distributions are ideally generated with common random numbers so that
the same uncertainty space is utilized across all designs. Denote the total simulation budget for each design
with n, minimum computing budget of each scenario with n0, and the number of allocated simulation
replications to design t of scenario (input distribution) i with nt,i. Then nt,i runs of the simulation model
under design t using scenario i yields simulation outputs Yt,i,j := Yj(F̂

⋆
i , xt), j ∈ {1, · · · , nt,i}. We can

Vahdat and Shashaani

then estimate the expected value and variance of each design t’s performance under scenario i with

Ȳt,i(nt,i) =
1

nt,i

nt,i∑
j=1

Yt,i,j , and σ̂2
t,i(nt,i) =

1

nt,i − 1

nt,i∑
j=1

(Yt,i,j − Ȳt,i)
2.

We assume that Yt,i,j’s for each design t and scenario i follow a normal distribution with mean θt,i and
variance σ2

t,i. This assumption is not restrictive as the simulation output often comprises a sum of terms,
e.g., in ML, it comprises the sum of squared prediction errors on a test dataset. R&S typically ranks
designs based on their overall (across scenarios) average performance ¯̄Yt = 1

b

∑b
i=1 Ȳt,i(nt,i). Hence,

the selected best design is one with the smallest overall average performance whose index we mark as
t∗ := argmint∈{1,...,m}

¯̄Yt. The choices b for number of scenarios and m for number of designs will be
kept fixed throughout this paper and excluded from notations for simplicity.

R-OCBA suggests a strategy in R&S for optimal allocation of computation budget to different scenarios
of each design to robustly maximize the probability of correct selection (PCS) of the true best design x∗ under
a fixed total budget. R-OCBA changes the best design definition as argmint∈{1,··· ,m}maxi∈{1,··· ,b} Yt,i,
i.e., one with the best (smallest) worst-case scenario. Focusing on the worst-case scenario is a common
approach in increasing robustness (Ghaoui et al. 2003). The PCS, which we wish to maximize, is defined
here as the probability that the best design’s worst-case scenario is better than all other designs’ worst-case
scenarios given b bootstrap distributions:

max
(nt,i, t=1,··· ,m,i=1,··· ,b)

P
{

max
i∈{1,...,b}

Ȳt∗,i(nt∗,i) < min
t∈{1,...,m}

max
i′∈{1,...,b}

Ȳt,i′(nt,i′)

∣∣∣∣F̂ ⋆
1 , · · · , F̂ ⋆

b

}

s.t.
b∑

i=1

nt,i ≤ n ∀t ∈ {1, · · · ,m}. (1)

Note, unlike the usual practice in R&S, where the total budget across all designs is limited, we limit the
budget of each design to provide greater flexibility for the larger optimization task. It will be established
later that in our optimization routine, R&S is invoked in every iteration to rank the survivors. Problem (1)
seeks nt,i for each design and scenario, within the allowable budget, for each case that attains the highest
PCS, conditioning on a set of sampled scenarios, i.e., bootstraps. For ease of exposition, we henceforth
drop the sample size as the argument of sample mean and sample variance statistics.

Let it := argmaxi Ȳt,i(nt,i) be the index of the worst-case scenario of design t. To have a means
of comparison between designs using the normality assumption of the simulation outputs, define the
discrepancy between the i-th scenario of the t-th design and that of the i′-th scenario of the t′-th design as

R[t,i],[t′,i′] =
|Ȳt,i − Ȳt′,i′ |

σ̂t,i/
√
nt,i + σ̂t′,i′/

√
nt′,i′

. (2)

Using the discrepancy measure in (2), we term the most sensitive scenario as the scenario of the best design
t∗ with minimum discrepancy from all other designs’ worst-case scenarios as

īt∗ = argmin
i∈{1,...,b}

min
t∈{1,...,m},t ̸=t∗

R[t,it],[t∗,i].

Mainly, īt∗ denotes the best design’s most sensitive input model (scenario), which may change the overall
competitiveness and rank of the best design with small shifts following an added budget. To better clarify
the difference between īt∗ and it∗ , note that it∗ is the worst scenario of t∗ in terms of expected average
performance, but īt∗ is most sensitive using discrepancy in (2). We further define the sensitive design t̄ as
one whose worst-case scenario has the least discrepancy from the best design’s worst-case scenario:

t̄ = argmin
t∈{1,...,m},t̸=t∗

R[t,it],[t∗,it∗].

Vahdat and Shashaani

Here too, t̄ is a design that is more likely to be affected by an added budget. The R-OCBA procedure
proves that an asymptotically approximated version of (1) can be optimized via the following steps:

1. Use n0 simulation calls for all scenarios and designs to compute Ȳt,i and σ̂t,i.
2. If the

∑b
i=1 nt,i ≥ n for all t ∈ {1, · · · ,m}, go to step 3, otherwise repeat:

(a) Compute Â1 =
∑b

i=1 n
2
t∗,i/σ̂

2
t∗,i and Â2 =

∑m
t=1,t ̸=t∗ n

2
t,it

/σ̂2
t,it

, derived from the optimality
conditions for (1) and representing the partial derivative of the approximated PCS with respect
to the nt,i’s. At the optimum allocation, we must have Â1 = Â2.

(b) If Â1 < Â2, allocate budget to the most sensitive scenario of the best design, īt∗ .
(c) If Â1 > Â2, allocate budget to the worst-case scenario of the sensitive design it̄.
(d) Update the sample means and variances accordingly.

3. Report the best design, xt∗ .

R-OCBA enhances the efficiency of the evaluation process with the goal of maximizing robustness (addressing
the best worst-case). We employ a variant of it for allocating additional computing budget in an adaptive way.
R&S is an exhaustive search procedure apt for use within each population of GA to rank a fixed number of
surviving designs. Therefore, while we conduct simulation optimization across iterations choosing designs
with best average performance, we approach the budget allocation in each iteration as a R&S and maintain
robustness by using worst-case performance. We will next describe the GA.

2.2 The Genetic Algorithm

The GA is a popular approach that can help navigate the optimization of complex systems by mimicking
the process of natural selection and evolution (Holland 1992). The key idea behind the GA is that the
fittest designs are more likely to survive and pass on their genetic structure to the next generation, leading
to a gradual improvement of the fitness (performance) over time. Since GA is effective in exploring large
and complex design spaces, it has been widely used for simulation optimization with successful outcomes
reported in qualitative and quantitative case studies (Boesel and Nelson 1998; Azadivar and Tompkins
1999; Nazzal et al. 2012). GA is a heuristic technique that is shown to converge asymptotically, in terms
of visiting all solutions infinitely often (Bhandari et al. 1996). Its effectiveness depends on several factors,
such as the choice of evaluation metric, the population (generation) size, the stopping criteria, and the
characteristics of the problem being solved (Mitchell 1998). Researchers have also combined GA with
R&S procedures to enhance the selection procedure of GA with probabilistic guarantees (Gupta 1965; Xiao
and Lee 2014; Kou et al. 2021). These techniques have proven effective in increasing the accuracy of GA
in solving complex problems (Liu and Cramer 2018). The GA involves five key operations:

Initialization randomly select a population of m designs,
Evaluation evaluate each design and return their mean fitness value,
Selection sample part of the next generation from current generation based on fitness-based ranks,
Crossover combine attributes of two randomly chosen designs to generate new designs,
Mutation add or delete an attribute in a few randomly chosen designs.

Selection, crossover, and mutation occur a certain number of times in each new population based on
predefined probabilities (parameters) to form the next population. The algorithm stops when either there is
no progress for a certain number of successive generations or the maximum permitted generation count is
reached. In standard GA, each individual is represented with a binary vector indicating the inclusion and/or
exclusion of attributes. The general formulation of GA and its bit-based definition of designs makes it a
suitable optimization engine for high-dimensional binary search. We exploit this characteristic in Section 4
and showcase the performance of GA in a binary space.

The selection process chooses a sub-population for the next generation. At iteration 1, GA initiates its
optimization process by uniformly sampling the feasible space. At the later iterations, a selection process

Vahdat and Shashaani

randomly chooses a subset of designs with better estimated fitness to generate the next population (Miller
and Goldberg 1995). The chosen group is subjected to crossover and mutation methods to explore other
possible designs and avoid being stuck in a neighborhood. The design identified as the best survives in
the next generation with probability 1. However, due to mutation, there is a nonzero probability that it
will be moved out of the population. The Q-tournament method by Schmitt (2001) is commonly used for
selection. It selects individuals based on their rank in the current population, where those with higher ranks
are more likely to be selected. Therefore, the accuracy of fitness evaluation that ranks the designs plays a
critical role in survival probability in each GA iteration.

While successful in deterministic optimization, GA is challenged to determine the best among a set of
surviving designs when dealing with stochastic problems. In non-stochastic problems, the fitness value of
each solution candidate is precise, and sorting in descending order imposes no risk toward search. However,
in stochastic problems, fitness is estimated and it needs to be clarified if there is a statistical guarantee that
one design is better than another. This guarantee requires considering the bias and variance of IU and SU
that can affect the accuracy of pairwise comparisons between their point estimates with a limited budget.

3 THE ADAPTIVE ROBUST GA

To improve the evaluation process for data-driven and stochastic problems, we seek to debias the fitness
estimates and use R-OCBA in an efficient manner within GA. Therefore, ARGA has three main components:

1. Implementing a robust R&S within GA via bootstrapped input models statistically guarantees the
significance of the surviving design’s estimated fitness compared to other designs.

2. Inside the R&S procedure, we devise a debiasing procedure applying an FIB step with control
variates to efficiently calculate the induced bias during estimation given a fixed budget.

3. We then use an adaptive sampling rule that examines the current population’s proximity to optimality
and determines whether the debiased estimated values in the current iteration require more precision.
If that is the case, we allocate more budget to a design with an input model that is more likely to
strike a balance between the statistical error and optimality gap. We repeat this inspection until
obtaining sufficient precision or exhausting the total per-iteration per-design budget n.

Component 1 is, to our knowledge, the first attempt at implementing a nested setting within GA
to extract IU information. We adopt the notation introduced for R&S but add an index k for iteration
(interchangeably referred to as generation or population) in all the metrics, e.g., Xk,t is the t-th design
at iteration k of the GA (we use capital letter X to reflect that it is now random and dependent on the
random quantities evaluated during one run of the GA algorithm), and nk,t,i number of replications for
scenario i of design t in iteration k. The sample means and sample variances in each iteration will be
denoted as Ȳk,t,i and σ̂2

k,t,i accordingly. The total budget for each design n is fixed for all iterations of GA,
while setting the minimum budget to evaluate any design under any scenario as n0. The rank of designs
in population k follows from the estimated expected value and variance of each design’s fitness. Given
that each design is evaluated under different input models, the ranking will use their average simulation
outputs, i.e., ¯̄Y (Xk,t) :=

¯̄Yk,t =
1
b

∑b
i=1 Ȳk,t,i. We will denote the best design up to iteration k as

X∗
k = argmin

Xk′,t:k
′≤k, t∈{1,...,m}

¯̄Y (Xk′,t).

Note, this is different from typical robust procedures that label the design with the lowest worst-case
performance as the best. This is because we handle robustness differently by debiasing Ȳk,t,i during the
evaluation step in Component 2. Following the debiasing and before the selection step, Component 3
conducts a post-fitness evaluation to provide an opportunity to efficiently improve the precision of the
population’s estimated performance. As in R-OCBA, here the allocation follows a typical worst-case
performance to reduce the risk. The following sections provide more details about these two components.

Vahdat and Shashaani

3.1 Evaluation Step: Debiasing

Vahdat and Shashaani (2023) developed a FIB that characterizes the bias in the simulation output due to error
in input distributions. The effect of bias in simulation outputs can be significant in smaller datasets (Lam
2016). Recall that at a given iteration k, we aim to compare any two solutions Xk,t and Xk,t′ with their
estimated performance and rank them via R&S. Let the true input distribution F be unknown and define
θk,t(F) := EY [Ȳ (F,Xk,t)] as the true mean performance of design t in iteration k. For the remainder
of this section, we drop Xk,t and the first two indexes k and t from all notations, as they do not change
during debiasing. Recall that the budget ni = n0 for all scenarios i = 1, 2, . . . , b throughout this step.

On the basis of the bootstrap theory (Efron 1979), we decompose the true mean performance as follows
θ(F) ≈ θ(F̂)− β(F̂)− γ(F̂) with two terms that approximate bias in combination. In particular, the first
term β(F̂) := EF̂ [θ(F̂

⋆)] − θ(F̂) approximates the true bias β(F) = θ(F̂) − θ(F) with approximation
error γ(F) = β(F) − β(F̂), that is itself approximated with the approximation error between biases in
nested bootstrap input distributions, i.e., γ(F̂) := (EF̂ [θ(F̂

⋆)] − θ(F̂)) − EF̂ [EF̂ ⋆ [θ(F̂
⋆⋆) | F̂ ⋆]]. Note,

EF̂ [θ(F̂
⋆)] is an expectation of θ values with respect to the sampling distribution of F̂ , i.e., using datasets

(Y ⋆
1,j , j = 1, 2, . . . , n1), (Y

⋆
2,j , j = 1, 2, . . . , n2) . . . drawn from F̂ each forming an empirical distribution

denoted by F̂ ⋆
1 , F̂

⋆
2 , Similarly, EF̂ [EF̂ ⋆ [θ(F̂

⋆⋆) | F̂ ⋆]] takes an expectation of θ values in an additional
nested layer, conditional on the first nested bootstrap’s empirical distribution, and then integrated out with
respect to F̂ ’s sampling distribution. Vahdat and Shashaani (2023) show that under mild conditions (to
allow interchanging of expectations) we can equivalently write a similar expression for the outputs directly,
i.e., by fixing the simulation seed that produces the Yj(·)-th output for a given input model:

Yj(F)
d
≈ Yj(F̂)− (Wj(F̂) + ϵ1(F̂))− (Vj(F̂) + ϵ2(F̂)), (3)

where
d
≈ denotes weak approximation (in distribution) with a random variable, Wj := EF̂ [Y (F̂ ⋆)]−Y (F̂)

and Vj := EF̂ [Y (F̂ ⋆)− Y (F̂)]−EF̂ [EF̂ ⋆ [Y (F̂ ⋆⋆) | F̂ ⋆]− Y (F̂ ⋆)] are two random variables on the right-
hand-side accompanied by ϵ1(F̂) and ϵ2(F̂) that represent mean-zero stochastic noise random variables.
This means that subtracting the two parentheses in (3) from each simulation output leads to a debiased
output value. The point of performing this step for each output value instead of the overall estimator, is
to enable use variance reduction techniques such as common random numbers and correlating the deeper
layers with the earlier ones. Vahdat and Shashaani (2023) also show that when the problem is purely
data-driven such as in machine learning applications, then the estimated bias value from each input model
can be quite variable and rather than subtracting fixed bias estimates from the nominal outputs (with the
empirical distribution from the original data), it is better to pretend that each of the first layer bootstrapped
input models F̂ ⋆

1 , F̂
⋆
2 , . . . are the actual nominal input model and repeat the procedure above to compute

the bias for each input model separately. This leads to computing the debiased values Y d
i,j := Y d

j (F̂
⋆
i) with

Y ⋆d
i,j = Y ⋆

i,j − Ŵi,j − V̂i,j , (4)

where Ŵi,j estimates Wi,j using b′ inner bootstraps, i.e., with resampled data (Y ⋆⋆
i,i′,j , j = 1, 2, . . . , n0) that

form the empirical distributions F̂ ⋆⋆
i,i′ for all i = 1, 2, . . . , b and i′ = 1, 2, . . . , b′. Concretely, the first term of

Wi,j = EF̂ [EF̂ ⋆ [Y (F̂ ⋆⋆) | F̂ ⋆]]− EF̂ [Y (F̂ ⋆)] is estimated with (bb′)−1
∑b

i=1

∑b′

i′=1 Y
⋆⋆
i,i′,j . Similarly, the

second term of Vi,j = EF̂ [EF̂ ⋆ [Y (F̂ ⋆⋆) | F̂ ⋆]−Y (F̂ ⋆)]−EF̂ [EF̂ ⋆ [(EF̂ ⋆⋆ [Y (F̂ ⋆⋆⋆) | F̂ ⋆⋆]−Y (F̂ ⋆⋆)) | F̂ ⋆]]

is estimated requiring one more nested layer to obtain V̂i,j . However, in this layer we only use one
bootstrapped dataset, i.e., (Y ⋆⋆⋆

i,i′,j , j = 1, 2, . . . , n0) drawn from F̂ ⋆⋆
i,i′ due to the fact that the error rate of

this bias estimation procedure Op((nb
′)−1/2) does not depend on repeats in the deeper layer, which is why

it is called FIB or the warp-speed double-bootstrap (Chang and Hall 2015).

Vahdat and Shashaani

The suggested approach for debiasing the output estimator has limitations, as it raises the possibility of
increased variance in the performance estimate. To address this issue, we propose a control variate method
for Ẑi,j = Ŵi,j + V̂i,j , which involves adding a multiplier of a variable that is centered (has mean zero) and
correlated to the estimator, i.e., Ẑc

i,j := Ẑi,j + α(Y ⋆
i,ni+1 − Y ⋆

i,j). Importantly, Y ⋆
i,ni+1 is the model output

independent from simulation outputs Y ⋆
i,j for j ∈ {1, · · · , ni}, and in the control variate expression we have

used the fact that E[Y ⋆
i,ni+1−Y ⋆

i,j] = 0. This technique aims to minimize and control the estimation variance
(Ross 2022). The optimal control variate coefficient α∗ = Cov(Ẑi,j , Y

⋆
i,ni+1 − Y ⋆

i,j)/Var(Y ⋆
i,ni+1 − Y ⋆

i,j)
can be estimated. We, hence, use the debiased outputs that exploit control variate remedies and denote
them by Y ⋆cd

i,j . The ultimate estimated performance that will be used for each design then is computed as
¯̄Y cd :=

∑ni
j=1

∑b
i=1(bni)

−1Y ⋆cd
i,j . The proposed control variate technique is a naive attempt to reduce the

variance in this paper. More effective variance reduction procedures remain for future research. We also
note that when more budget is dedicated for an input model, as will be explained in the next section, only
the highest level bootstraps are increased and the budget for deeper level ones remains fixed.

3.2 Evaluation Step: Post-fitness

The evaluation process discussed above requires n0× (2b′+1)+1 simulation runs to generate one variance
reduced debiased estimated value for a given scenario i of design t at iteration k. Therefore, the total budget
spent at iteration k is m × b × (n0 × (2b′ + 1) + 1). Furthermore, increasing the number of simulations
nk,t,i from n0 for scenario i of a design t increases the estimation accuracy and reduces the standard error.
So the question of how much and at what rate to increase the nk,t,i becomes of interest.

At the beginning of the optimization, spending large computation budgets is unnecessary, as the
algorithm is more focused on exploring and screening the feasible space. As the search goes on and the
algorithm approaches the optimal region, it becomes critical to more accurately estimate each individual
in the population and compare their performance with others to maintain the ability to distinguish the
better designs with statistical guarantees. Say, we are in a later iteration of GA and want to increase the
simulation budget. How to do this increase, that is, to what design and scenario, can follow the R-OCBA
process we explained earlier. The objective of R-OCBA is to enhance the probability of accurate selection
by prioritizing the worst-case scenario of the best design among alternatives. While this approach does
not precisely align with the sorting process in each genetic algorithm iteration, it offers a more cautious
means to integrate uncertainty and determine the crucial solution and bootstrap. Moreover, this allocation
significantly influences the average output and serves as an approximation for distributing supplementary
budget across diverse input models. The remaining question is when should this additional budget allocation
be triggered? We suggest an adaptive rule for triggering this additional budget allocation in a stochastic
GA. But for practical purposes, we limit the maximum computation budget used for each design and its all
scenarios in each iteration to n, i.e.,

∑b
i=1 nk,t,i ≤ n. Note that here we are excluding the effort needed

for debiasing and variance reduction as it is assumed fixed for each simulation run.
Our adaptive rule balances the optimality gap versus the average estimation error in the population.

Define the average estimation error in population k as

σ̂k :=

√√√√ 1

m

1

b

m∑
t=1

b∑
i=1

σ̂2
k,t,i

nk,t,i
. (5)

If σ̂k is small relative to the optimality gap for a given iteration k, no additional computation budget is
required. We measure the optimality gap of the proposed algorithm with

Πk =

∣∣∣∣∣ ¯̄Y (X∗
k)

1
m

∑m
t=1

¯̄Yk,t
− 1

∣∣∣∣∣, (6)

Vahdat and Shashaani

where the numerator is the estimate of the expected performance of the best design up to iteration k, and
the denominator is the average performance of all designs in the current iteration. Knowing that in GA
approaching the optimal region means the designs in the population will have similar fitness, we track the
relative distance of the fitness of X∗

k from the average fitness of all designs in iteration k. ¯̄Y (X∗
k) serves

as the fitness of a proxy optimal design, and its accuracy and precision gradually improve as the search
progresses. We expect Πk to be small and closer to zero if the current population is near the optimal region
and larger otherwise. The adaptive sampling rule here looks like for

min

{
(nk,t,i, t = 1, . . . ,m, i = 1, . . . , b) :

(
σ̂k ≤ ℓ ¯̄Y (X∗

k)Πk

)
∪

(
b∑

i=1

nk,t,i = n ∀t ∈ {1, · · · ,m}

)}
,

where ℓ is a constant governing our level of conservativeness. A larger ℓ makes the criteria easier to satisfy
and could lead to little to no change to the budget allocation prior to post-fitness. The additional account
for ¯̄Y (X∗

k) is to keep the scales of the right and left-hand side in the same order of magnitude.

Algorithm 1 ARGA
Given: population size m, number of scenarios b, computing budget increment δ ≥ 1, adaptive sampling
constant ℓ, maximum allowed budget n and minimum budget b×n0 (n0 in every scenario) for each design.
Initialize: set k = 1, randomly select m designs, and compute variance-reduced debiased estimated fitness
of each design ¯̄Y ⋆cd

1,t with b× n0 replications.
for iteration k = 2, · · · ,K do

Compute ¯̄Y ⋆cd
k,t of each design with n0 replications.

Update X∗
k with the best solution found up to iteration k, in terms of average fitness.

Calculate the estimation error σ̂k and optimality gap Πk using (5) and (6), respectively.
while σ̂k > ℓ ¯̄Y (X∗

k)Πk and
∑b

i=1 nk,t,i + δ ≤ n ∀t ∈ {1, · · · ,m}, do
Add δ replications to the design and scenario that is identified by R-OCBA (Steps (a)-(d) Section 2.1).
Update Ȳk,t,i and σ̂k,t,i for all t = 1, 2, . . . ,m and i = 1, 2, . . . , b.
Update σ̂k and Πk.

end
Complete the selection, crossover, and mutation steps of the standard GA using the updated results.
If the convergence criteria are met, terminate the search; otherwise set k = k + 1 and continue.

end

When k > 1, ARGA applies the post-fitness process once it calculates the debiased fitness of the
designs using n0 replications per design per scenario. If the average standard error σ̂k is reasonably small
compared to the optimality gap measure ℓ ¯̄Y (X∗

k)Πk and the maximum number of runs per design has not
been exhausted, the R-OCBA algorithm assigns additional budget to a scenario of a design. Observing
σ̂k > ℓ ¯̄Y (X∗

k)Πk signals one of two possibilities: either the population’s average standard error is substantial,
making the estimated quantities unstable and misleading, or the optimality gap is small, indicating more
effort may be needed to distinguish better designs. In both cases, allocating more budget (with increments
of δ ∈ Z+) is advisable to help the progress in optimization. With the added budget, the optimality gap
remains nearly constant since the population is not changed. At the same time, the average standard error
decreases, ensuring that the loop will terminate (even without reaching the maximum budget). Importantly,
the scaling of the optimality gap with ¯̄Y (X∗

k) tends to decrease as the optimization algorithm advances,
making the adaptive sampling criteria stricter, highlighting the need to minimize the estimation error as
much as possible. In the event X∗

k is excluded from the current population due to mutation, its quantity will
not change with added budget but it continues to scale the distance to optimality of the current population.

All steps of ARGA are listed in Algorithm 1. The first iteration initiates with a simple population
evaluation using minimum simulation effort n0 and no post-fitness step to obtain a fast measurement of the

Vahdat and Shashaani

population’s optimality. As a final remark, we emphasize the pivotal role of debiasing prior to increasing
the precision. Ideally one would opt for debiasing the designs after choosing the right budget for them
(and each of their scenarios). However, debiasing is expensive yet less sensitive to small changes in the
budget than the standard error. We leave further investigation on this point to future research.

4 NUMERICAL RESULTS

This section presents the simulated experiments designed to evaluate the performance of the proposed
algorithm compared to other benchmarks. The investigations focus on the feature selection problem, a
challenging optimization task in both ML and simulation domains (George 2000). Feature selection refers
to identifying the most relevant variables that can explain the response effectively. Vahdat and Shashaani
(2020) formulated and approached feature selection as a simulation optimization problem.

The selection of features can be a complex problem, particularly because more features in a dataset lead
to exponential increase in complexity. To broadly evaluate the performance of competing GAs, we conduct
tests on two groups of datasets, namely "small" and "large" datasets. All datasets contain a continuous
response variable that we seek to predict, with all features following a normal distribution with varying
variances. We use simple linear regression to estimate the response. Each dataset contains a small number
of true features that contribute to the response. Since the datasets are synthesized, we know which features
truly contributed to the response. We compute the ratio of correctly selected features to all true features,
or the true positive rate (TPR), for each algorithm as a metric for comparing algorithms.

Identifying the contributing features can become more challenging when there is a correlation between
the features. In such cases, the features selection algorithm may mistakenly select correlated variables,
further increasing the complexity of the problem. We test the proposed approach with data sets that also
contain correlation between features. Table 1 provides detailed information on the characteristics of each
dataset. The remaining parameters of ARGA for these experiments are set to ℓ = 0.5, δ = 2, n0 = 5,
b′ = 5, and n = 100. The number of scenarios evaluated for each method is fixed to b = 10. The population
size m is fixed to the same number of data columns being tested. The input models are generated with
bootstrapping the data. The GA search parameters, such as mutation and crossover probability, are fixed
among all methods and set to 0.3 and 0.8, respectively. Stopping criteria in a GA affect its convergence,
impacting speed, solution quality, and robustness. In our study, GA terminates after 100 iterations without
improvement.

Table 1: Description of four synthetic datasets used in the numerical experiments.

Dataset label Correlated features? # Columns # Rows # True features

SDF No 15 300 5
SDF-C Yes 15 300 5
LDF No 30 300 10

LDF-C Yes 30 300 10

In Table 2, we evaluate the performance of three different GA methods for feature selection in ML
models. The methods compared are standard GA (Shashaani and Vahdat 2022), GA with debiased estimators
for model output (Vahdat and Shashaani 2023), i.e., Robust GA (RGA), and ARGA. The evaluation is
based on TPR (hoping to be near 1) and the number of selected features (hoping to be near the number of
true features). Keeping the total budget constant between these three methods means that GA and RGA
use a fixed number of calls in each iteration and will terminate at likely a larger iteration than ARGA,
which has a varying number of calls in each iteration. The adaptive number of calls in ARGA results
in much fewer simulation runs at the beginning of the search and more extensive searches towards the
end. Despite generating fewer populations (GA iterations) ARGA provides better designs. The results also
indicate that ARGA outperforms the other methods in retrieving the correct variables while maintaining a
high TPR. The computation time for each method, including simulation effort and arithmetic calculations,

Vahdat and Shashaani

is also insightful; ARGA indeed relieves some of the added computation for bias calculation by adaptively
growing the budget. This relief in computation is evident in the larger datasets with roughly 30% and 25%
reduction in the total time in LDF and LDF-C respectively.

Table 2: Three GA methods are test on four synthesized datasets with all metrics over 10 macro-replications;
average and standard error for each case are summarized here. In all datasets, ARGA outperforms the
other methods in terms of TPR, but more specifically, in the largers datasets (LDF and LDF-C) it shows
better performance in finding the right number of features (10) with less time.

Dataset Method # Features TPR Time (min)

SDF
GA 4.50 ± 0.37 0.66 ± 0.04 2.53 ± 0.31

RGA 3.80 ± 0.24 0.70 ± 0.04 3.96 ± 0.36
ARGA 4.40 ± 0.33 0.82 ± 0.06 4.54 ± 0.86

SDF-C
GA 4.20 ± 0.25 0.64 ± 0.04 2.81 ± 0.19

RGA 3.80 ± 0.13 0.64 ± 0.04 5.20 ± 0.47
ARGA 4.00 ± 0.39 0.74 ± 0.06 5.98 ± 0.93

LDF
GA 7.60 ± 0.31 0.67 ± 0.03 5.49 ± 0.42

RGA 6.50 ± 0.37 0.61 ± 0.03 8.43 ± 0.52
ARGA 9.40 ± 0.52 0.87 ± 0.03 5.93 ± 0.62

LDF-C
GA 7.50 ± 0.31 0.63 ± 0.02 5.02 ± 0.28

RGA 6.60 ± 0.16 0.61 ± 0.02 10.74 ± 0.54
ARGA 9.60 ± 0.72 0.77 ± 0.04 8.06 ± 0.92

Since the simulation effort can be the major burden for feature selection as the dataset grows, we
also compare the progress at intermediate simulation budgets spent before termination. Figure 1 depicts
the efficiency of ARGA in spending the simulation budget compared to others. We observe that when
the budget spent is small at the beginning of the search, the debiased GA has the best performance as it
allocates the computation budget to IU bias estimation, thereby enhancing its estimates. In contrast, ARGA
outperforms both competitors after spending about half of the budget. It efficiently spends less simulation
budget in the initial iterations, and that saved budget helps find better solutions later in the search.

5 CONCLUDING REMARKS

GA is a class of evolutionary solvers widely used in practice. Their volatility makes them one of the
few viable choices for complex optimization problems, such as in high-dimensional binary search of
functions contaminated by stochastic noise. A significant risk that can misguide the search is IU bias. We
propose ARGA, a novel variant of the GA, aiming to accurately evaluate and select the best solution while
robustly reducing the computational cost in stochastic optimization. ARGA is equipped with (i) a debiased
estimator that uses a variance-reduced fast-iterated bootstrapping method to compute and reduce the IU
bias and (ii) an adaptive R-OCBA rule that balances the estimation error and optimality gap at each GA
iteration, allocating computation effort to the input models contributing to the variability of the most critical
solutions. In principle, the new methodology allows for a middle-ground between the fixed-precision and
fixed-budget R&S within an optimization algorithm such as GA. The fundamental unification of finding
that middle-ground in R&S-type procedures will be insightful and generalizable for optimization beyond
the context of a binary search engine such as GA.

ARGA has the potential to reduce computation costs significantly while still achieving similar or better
solutions. This is because its adaptive R-OCBA in each iteration guarantees a predetermined probability of
correct selection even without exhausting the predetermined budget. Accurate design comparisons improve
GA’s exploration in the search space. Our empirical results demonstrate enhanced effectiveness in ARGA
applied to a data-driven optimization problem, namely, feature selection, in varying dimensions.

Vahdat and Shashaani

Figure 1: Confidence intervals, computed over 10 macro-replications, compare TPR values for the SDF
dataset at intermediate budgets. RGA yields an improvement from the original GA (where no IU information
is utilized), but ARGA significantly improves the feature selection.

ACKNOWLEDGMENTS

This work was partially supported by the American Association of University Women (AAUW) Research
Publication Grant in Engineering, Medicine and Science, and American Educational Research Association.

REFERENCES
Azadivar, F., and G. Tompkins. 1999. “Simulation Optimization with Qualitative Variables and Structural Model Changes: A

Genetic Algorithm Approach”. European Journal of Operational Research 113(1):169–182.
Bechhofer, R. G. 1995. Design and Analysis of Experiment for Statistical Selection, Screening, and Multiple Comparisons.

Number 04; QA279, B4.
Bhandari, D., C. Murthy, and S. K. Pal. 1996. “Genetic Algorithm with Elitist Model and its Convergence”. International

journal of pattern recognition and artificial intelligence 10(06):731–747.
Boesel, J., and B. L. Nelson. 1998. “Accounting for Randomness in Heuristic Simulation Optimization”. In Proceedings of the

12th European Simulation Multiconference on Simulation - Past, Present and Future, 634–638: SCS Europe.
Chang, J., and P. Hall. 2015. “Double-bootstrap Methods that Use a Single Double-bootstrap Simulation”. Biometrika 102(1):203–

214.
Corlu, C. G., A. Akcay, and W. Xie. 2020. “Stochastic Simulation under Input Uncertainty: A Review”. Operations Research

Perspectives 7:100162.
Corlu, C. G., and B. Biller. 2015. “Subset Selection for Simulations Accounting for Input Uncertainty”. In Proceedings of the

2015 Winter Simulation Conference, edited by L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D.
Rossetti, 437–446. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Efron, B. 1979. “Bootstrap Methods: Another Look at the Jackknife”. The Annals of Statistics 7(1):1–26.
Fan, W., L. J. Hong, and X. Zhang. 2020. “Distributionally Robust Selection of the Best”. Management Science 66(1):190–208.
Gao, S., H. Xiao, E. Zhou, and W. Chen. 2017. “Robust Ranking and Selection with Optimal Computing Budget Allocation”.

Automatica 81:30 – 36.
George, E. I. 2000. “The Variable Selection Problem”. Journal of the American Statistical Association 95(452):1304–1308.
Ghaoui, L. E., M. Oks, and F. Oustry. 2003. “Worst-case Value-at-Risk and Robust Portfolio Optimization: A Conic Programming

Approach”. Operations Research 51(4):543–556.
Gupta, S. S. 1965. “On Some Multiple Decision (Selection and Ranking) Rules”. Technometrics 7(2):225–245.
Holland, J. H. 1992. “Genetic Algorithms”. Scientific American 267(1):66–73.

Vahdat and Shashaani

Hong, L. J., W. Fan, and J. Luo. 2021. “Review on Ranking and Selection: A New Perspective”. Frontiers of Engineering
Management 8(3):321–343.

Hunter, S. R., and B. L. Nelson. 2017. “Parallel Ranking and Selection”. In Advances in Modeling and Simulation, 249–275.
Springer.

Kou, G., H. Xiao, M. Cao, and L. H. Lee. 2021. “Optimal Computing Budget Allocation for the Vector Evaluated Genetic
Algorithm in Multi-objective Simulation Optimization”. Automatica 129:109599.

Lam, H. 2016. “Advanced Tutorial: Input Uncertainty and Robust Analysis in Stochastic Simulation”. In Proceedings of the
2016 Winter Simulation Conference, 178–192. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Liu, M., and A. M. Cramer. 2018. “Computing Budget Allocation in Multi-objective Evolutionary Algorithms for Stochastic
Problems”. Swarm and Evolutionary Computation 38:267–274.

Miller, B. L., and D. E. Goldberg. 1995. “Genetic Algorithms, Tournament Selection, and the Effects of Noise”. Complex
Systems 9(3):193–212.

Mitchell, M. 1998. An Introduction to Genetic Algorithms. The MIT Press.
Nazzal, D., M. Mollaghasemi, H. Hedlund, and A. Bozorgi. 2012. “Using Genetic Algorithms and an Indifference-zone Ranking

and Selection Procedure under Common Random Numbers for Simulation Optimisation”. Journal of Simulation 6(1):56–66.
Pasupathy, R., and S. Ghosh. 2013. Simulation Optimization: A Concise Overview and Implementation Guide, Chapter 7,

122–150. INFORMS TutORials in Operations Research.
Ross, S. M. 2022. Simulation. Academic Press.
Schmitt, L. M. 2001. “Theory of Genetic Algorithms”. Theoretical Computer Science 259(1-2):1–61.
Shashaani, S., and K. Vahdat. 2022. “Improved Feature Selection with Simulation Optimization”. Optimization and Engineer-

ing:1573–2924.
Song, E., and B. L. Nelson. 2019. “Input–Output Uncertainty Comparisons for Discrete Optimization via Simulation”. Operations

Research 67(2):562–576.
Song, E., B. L. Nelson, and L. J. Hong. 2015. “Input Uncertainty and Indifference-zone Ranking and Selection”. In Proceedings

of the 2015 Winter Simulation Conference, edited by L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal,
and M. D. Rossetti, 414–424. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Vahdat, K., and S. Shashaani. 2020. “Simulation Optimization Based Feature Selection, A Study on Data-driven Optimization
with Input Uncertainty”. In Proceedings of the 2020 Winter Simulation Conference, edited by K.-H. G. Bae, B. Feng,
S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, 2149–2160. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Vahdat, K., and S. Shashaani. 2021. “Non-parametric Uncertainty Bias and Variance Estimation via Nested Bootstrapping and
Influence Functions”. In Proceedings of the 2021 Winter Simulation Conference, edited by S. Kim, B. Feng, K. Smith,
S. Masoud, Z. Zheng, C. Szabo, and M. Loper, 1–12. Piscataway, New Jersey: Institute of Electrical and Electronics
Engineers, Inc.

Vahdat, K., and S. Shashaani. 2023. “Robust Prediction Error Estimation with Monte Carlo Methodology”. arXiv preprint
arXiv:2207.13612.

Wu, D., and E. Zhou. 2017. “Ranking and Selection under Input Uncertainty: A Budget Allocation Formulation”. In Proceedings
of the 2017 Winter Simulation Conference, edited by V. W. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer,
and E. H. Page, 2245–2256. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Xiao, H., and L. H. Lee. 2014. “Simulation Optimization Using Genetic Algorithms with Optimal Computing Budget Allocation”.
Simulation: Transactions of the Society for Modeling and Simulation International 90(10):1146–1157.

Zhang, X., and L. Ding. 2016. “Sequential Sampling for Bayesian Robust Ranking and Selection”. In Proceedings of the 2016
Winter Simulation Conference, edited by T. M. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick,
758–769. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHIES
KIMIA VAHDAT is a fifth-year Ph.D. candidate at Edward P. Fitts Department of Industrial and Systems Engineering at
North Carolina State University. Her research is focused on applications of stochastic simulation in machine learning and data
science. Her email is kvahdat@ncsu.edu.

SARA SHASHAANI is an Assistant Professor in the Edward P. Fitts Department of Industrial and System Engineering at
North Carolina State University. Her research interests are probabilistic data-driven models and simulation optimization. She is
a co-creator of SimOpt. Her email address is sshasha2@ncsu.edu and her homepage is https://shashaani.wordpress.ncsu.edu/.

mailto://kvahdat@ncsu.edu
mailto://sshasha2@ncsu.edu
https://shashaani.wordpress.ncsu.edu/

	INTRODUCTION
	Preliminaries and Related Work
	Ranking and Selection with Input Uncertainty
	The Genetic Algorithm

	The Adaptive Robust GA
	Evaluation Step: Debiasing
	Evaluation Step: Post-fitness

	NUMERICAL RESULTS
	CONCLUDING REMARKS

