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A B S T R A C T

This study aims to show the application of stochastic optimization for efficient and robust parameter calibration
of engineering wake models. Standard values of the wake effect parameters are generally used to predict power
using engineering wake models, but some recent studies have shown that these values do not result in accurate
prediction. The proposed approach estimates the wake effect parameters using operational data available from
actual wind farms to minimize the prediction error of the wake model by using trust-region optimization.
To further improve computational efficiency, we implement stratified adaptive sampling. We employ decision
trees to stratify the data and propose two ways of adapting the sampling budget to the constructed strata:
budget allocation with dynamic weights and fixed weights. We extend our analysis to determine the functional
relationship between the turbulence intensity and wake decay coefficient. Our experiments suggest that wake
parameters or a functional relationship between turbulence intensity and wake decay coefficient may need
adjustments (from assumed standard values) for a particular wind farm using operational data from that wind
farm to characterize the wake effect better.
1. Introduction

In wind power systems, a wind turbine acts as an obstacle to the
free stream wind speed resulting in the development of a wake effect
that is characterized by reduced wind speed and increased turbulence
in the downstream direction. A turbine present in the wake of another
upstream turbine generates less power and is under more structural and
mechanical load. In a wind farm, this wake phenomenon is amplified
as a turbine might be affected by wakes due to multiple turbines. The
wake effect is of major importance for various engineering applications
like predicting the annual energy production and wind farm layout
optimization [1–4]. Thus it becomes necessary to numerically estimate
these wake interactions to enhance the wind farm performance.

Various computational fluid dynamics (CFD) techniques, such as
large-eddy simulations (LES), can be used to model the wake phe-
nomenon accurately, but they are computationally overwhelming [5,6].
The LES simulations on a single turbine performed by Sedaghatizadeh
et al. [7] needed 200 h to complete using a multi-core system. In
Churchfield et al. [8], it took one million CPU hours to perform one LES
simulation of 10 min of real-time operation for a wind farm consisting
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of 48 turbines. The LES simulations run by Breton et al. [9] were able
to improve the computational time of the above wind farm but still
needed ten thousand CPU hours. These CFD models provide useful
insights into wake mechanisms over a broad spectrum of atmospheric
conditions. However, enormous computational resource requirement
limits the usability of these methods for simulating or understanding
large-scale wind farm operations for wind farm optimization.

Another school of thought is to devise purely data-driven models.
Göçmen and Giebel [10] applied a purely data-driven approach to
estimate the power using Long short term memory recurrent neural
network using one hour historical data to predict the wind speed at
downstream turbines. In [11,12], new statistical models based on the
Gaussian Markov random field are presented to characterize hetero-
geneous wind deficits over free-flow wind conditions. However, pure
data-driven approaches cannot capture a general characteristic of wind
flow inside a general wind farm. Instead their results are very specific
to the data at hand (or specific to the studied wind farm) and may not
be generalized to estimate or understand the wind field in other wind
farms. While these models can achieve high accuracy, pure data-driven
approaches may not adhere to physics and their results could be less
interpretable than those of physics-based models.
https://doi.org/10.1016/j.apenergy.2023.121426
Received 2 March 2022; Received in revised form 19 May 2023; Accepted 9 June 2
023

https://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
mailto:pjain23@ncsu.edu
mailto:sshashaa2@ncsu.edu
mailto:ebyon@umich.edu
https://doi.org/10.1016/j.apenergy.2023.121426


P. Jain et al.
This study focuses on the engineering wake models that offer com-
putational simplicity by expressing the wake phenomena using para-
metric analytical formulations. One can classify the engineering models
as kinematic models and field models. Field models are implicit models
that estimate the flow field at each point in the downstream direc-
tion [13]. The Ainslie model [14] is one of the classic field models
which determines the flow field by numerically estimating Reynold’s
Averaged Navier Stokes (RANS) equations. The field models are more
sophisticated as compared to the kinematic models. Still, the compu-
tation time needed to solve these models renders them unable to be
used for large-scale implementation, similar to the CFD-based wake
models [15].

On the other hand, kinematic wake models are derived by solving
the conservation of mass and momentum equations to get explicit
formulations. The Jensen model, suggested by Jensen [16] and later
modified by Katic et al. [17], is one of the earliest kinematic mod-
els. This model assumes that the wake propagates linearly in the
downstream direction at a rate driven by a constant called the wake
decay coefficient (WDC). Its wide use in the industry is due to its
ease of implementation and reasonable accuracy. There are also newly
developed extensions of the Jensen model to improve its accuracy.
The model proposed by Frandsen et al. [18] assumes instantaneous
wake expansion in the downstream direction and expresses this initial
expansion rate in terms of the thrust coefficient. Bastankhah and Porté-
Agel [19] proposed a model where a Gaussian wake shape is employed
to model the wake profile. Gebraad et al. [20] developed a multizone
model which assumes three different WDCs based on the region of the
wake. While these models improved the accuracy of the power gen-
erated at each turbine, they also increased the number of parameters
needed to characterize the wake. Larsen [21] proposed a model whose
calibration is relatively complicated as they used the RANS equations in
conjunction with mixing layer theory to model wake. Considering that
the original Jensen model formulates the wake based on the wind speed
deficit and does not consider the influence of turbulence on the wake,
recent studies extend the model by expressing the WDC as a function of
the hub height, surface roughness, and atmospheric stability [22–24].
Recently, Howland et al. [25] present a flow control model that looks
at the collective effect of simultaneously yawed and waked turbines in
a wind farm.

The research on kinematic wake models that has been mentioned
thus far focuses on the analytical development of wake modeling.
The accuracy of these models is significantly influenced by the choice
of wake parameters. Since they are influenced by a variety of wind
farm characteristics, such as geography, terrain effects, and wind farm
layout, these parameters could be unique to each wind farm. This
paper creates a novel way of identifying the appropriate values of wake
parameters in the kinematic wake models using operational data from
a wind farm. The primary advantage of the proposed methodology
over the strategy that is solely data-driven is that it still upholds the
‘‘physics’’ embedded in the kinematic wake model, even while it makes
use of operational data to enhance performance. More physics entails
more interpretability and more trust in practical application. Schreiber
et al. [26] used the Bastankhah and Porté-Agel’s [19] wake model as
their baseline model and identified the model parameters directly from
operational data by expressing each parameter as the sum of a baseline
constant value and correction term. Then they estimated the correction
term via maximum likelihood estimation. This type of approach to iden-
tify parameter values using operational (or physical trial) data is called
parameter calibration in the statistical literature. Parameter calibration
involves tuning the parameters such a way that the prediction error of
the analytical model is reduced and closely matches the physical data.
In the literature, Bayesian calibration approaches have been extensively
used for parameter calibration in several applications [27]. Typically,
with a limited number of computer simulations and/or physical trials,
Bayesian approaches use Gaussian Processes (GP) to quantify uncer-

tainties. However, as the data size grows, the computational time of the
Bayesian approach increases rapidly, and thus, the Bayesian calibration
gets inefficient, if not infeasible, for a big data setting [28].

The geographic location and the terrain effects play an important
role in the development of the wake, implying that the WDC can
be unique to each wind farm. Kinematic wake models with accurate
parameters can be efficiently used to design cooperative controls, such
as yaw control, among turbines in a utility-scale wind farm [25]. This
study thus aims to demonstrate a methodology that can be used to
calibrate the wind farm-specific parameters in the engineering wake
model using a large size of field data collected from an operational
wind farm. Due to the lack of a methodology that can handle large-scale
data, most studies in wake effects analysis are limited to using small-
scale datasets [29,30]. However, the resulting calibration would be
inaccurate when the small-scale datasets do not statistically represent
the physical process. Therefore, our goal is to use field data that covers
a wide spectrum of operational conditions.

These big data settings have encouraged using stochastic
optimization-based algorithms for parameter calibration [28,31].
Among several optimization methods, we use a derivative-free Trust-
Region (TR) based algorithm due to the versatility and stable per-
formance of its class in the presence of stochastic noise. The TR
based stochastic optimization sequentially builds local response sur-
faces guided by the optimization procedure. This procedure allows
us to obtain the estimated outputs from the engineering wake model
with more refined wake parameters throughout the iterative procedure.
As such, more informative local surrogate models are built using the
most updated information based on the parameter search trajectory.
Specifically, our approach builds surrogates for the loss function that
measures the difference between the engineering model output and
physical observation. Doing so effectively guides computer experiments
to identify the best subsets of data for achieving computational effi-
ciency and estimation robustness. While being effective, the original
TR algorithm faces noisy estimation when a subset of data is used at
each iteration, which can slow down the calibration process. To address
the limitation, we integrate adaptive and stratified sampling strategies
into the TR based algorithm to reduce the computational cost of getting
sufficiently accurate estimates.

To evaluate the proposed stochastic optimization-based calibration
approach, we first implement the algorithm with data from an offshore
and a land-based wind farm using two wake models: the original
Jensen’s model, and the extended model that formulates the wake
decay parameter to be linearly dependent on the turbulence intensity
(TI). We compare our approach’s prediction accuracy with the sug-
gested values in the literature to validate our calibration procedure. Our
approach shows superior computational efficiency and robustness over
an alternative optimization approach. We then extend our approach to
calibrate parameters of an analytical wake model [25] with a Gaussian
profile to showcase that the proposed approach can be easily applied
to other advanced engineering wake models.

Our contribution in this paper is two-fold: (i) we present a new data-
driven stochastic optimization-based approach using operational data
to calibrate parameters in wake models; (ii) we further improve the
algorithm in terms of both accuracy and efficiency by reconciling the
statistical variance reduction techniques into the optimization frame-
work. For further clarification, our objective is not to determine the
wake decay parameter in the Jensen wake model for all wind farms.
As mentioned earlier, each wind farm has its unique characteristics and
with the help of operational data from each wind farm, this research
aims to provide a new method for determining the proper values of
wake parameters in kinematic wake models that are specific to that
wind farm.

In the remainder of the paper, Section 2 discusses the engineering
wake model in more detail. Section 3 presents the stochastic opti-
mization framework to solve the wake calibration problem. Section 4
describes the proposed algorithms that search for the WDC efficiently
and robustly. Implementation and results are presented in Section 5.

Section 6 concludes the paper.
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Fig. 1. Top-hat structure of the Jensen wake model, where 𝑟𝑟 is the rotor radius and
𝑢0 is the free-stream wind speed.
Source: Excerpted from [16].

2. Engineering wake model

The Jensen model, an analytical engineering model, is one of the
very first wake models. It is based on the law of conservation of mass
with some simple assumptions like constant wind speed within the
wake cross section and linear propagation of wake in the downstream
direction. It was initially proposed to model the wake of a single turbine
and later modified by Katic et al. [17] to incorporate a multi-turbine
setting. Below we review the Jensen wake model and its extensions.

The wake profile in Jensen model is assumed to have a top-hat
shape, shown in Fig. 1. The diameter 𝐷𝑤 of the wake at a downstream
distance 𝑥 can be estimated as

𝐷𝑤 = 𝐷 + 2𝜃𝑥, (1)

where 𝐷 is the diameter of the turbine and 𝜃 represents the WDC. The
wind speed 𝑢 within the wake is less than the free-stream wind speed
and can be evaluated as

𝑢 = 𝑢0
[

1 −
1 −

√

1 − 𝐶𝑡

𝐷𝑤∕𝐷

]

, (2)

ith 𝑢0 being the free stream wind speed and 𝐶𝑡 the thrust coefficient of
he turbine, a design parameter specified by the turbine manufacturer.

The simplicity of this model makes it extremely viable to use but
ts accuracy largely depends on how well we can estimate the WDC.
ts widely accepted values in both industry and literature are 0.075 for
and-based wind farms, and 0.04 for offshore wind farms [17,32,33].
owever, several studies suggest that these recommended values do
ot accurately represent the wind speed deficits (or power deficits) in
ownstream turbines [11,12,30]. It may thus be beneficial to calibrate
wind farm-specific WDC using the operational data from the wind

arm.
The original Jensen model and its extension to multi-turbine wind

arms do not take into account the local wind conditions of wind
arms, because they use constant values for the WDC. Later, based on
oundary layer theory, Frandsen [34] suggested that the WDC can be
xpressed in terms of the turbine hub height and the surface roughness
f the wind farm. It was also suggested that the wake decay can be
nfluenced by turbulence. As the hub height of a turbine increases, the
ffect of surface roughness on the wake becomes less prominent. In
articular, the hub height for offshore turbines is typically taller than
hose of land-based turbines (e.g., 100 m), and it is projected to grow
o about 150 m [35]. Peña et al. [24] claim that the intensity of wake
ecay is predominantly based on the atmospheric stability at higher
ub heights. A stable atmosphere resits the motion of air in the vertical
irection [36]. The atmospheric stability is known to directly affect the
fficiency of wind farm. In general a wind farm is expected to be less
fficient under stable atmospheric conditions [37].
In literature, wake decay and atmospheric stability are often linked
ia TI. Barthelmie et al. [22] have shown that TI impacts normalized
ower output of an offshore wind farm. TI is the ratio of the stan-
ard deviation of the wind speed to the average wind speed during
certain time interval, say, 10 min. Higher TI implies more mixing
hich causes faster dissipation of the wake in the downstream direction
nd thus, less prominent the effect of wake decay. Generally, unstable
tmospheric conditions have higher TI and stable conditions have lower
I. However, under neutral conditions a wide range of TI values can be
bserved [22,38].

In attempts to relate the TI to the WDC 𝜃, several studies suggested
linear equation for the WDC in terms of TI [23,38] under certain

pecific conditions of atmospheric stability as

= 𝑝 + 𝑞 × TI, (3)

here 𝑝 and 𝑞 are positive constants. Alblas et al. [39] show that it
olds 𝜃 ≈ 0.5 × TI under neutral conditions, whereas under stable

and unstable conditions 𝜃 is of the order of TI or 1.5 to 1.9 times TI
respectively for offshore wind farms. Peña et al. [38] estimate the WDC
as 𝜃 ≈ 0.4×TI for a flat homogeneous terrain with hub heights ranging
from 40 m–60 m for on shore wind farms under stable wind conditions.
Further, Niayifar and Porté-Agel [40] used LES data to express the WDC
as 𝜃 = 0.003678 + 0.3837 × (TI)mod for 0.065 < (TI)mod < 0.15, where
TI)mod, the modeled TI, is a combination of measured TI and wake-
dded TI [13]. Modeling the WDC as a function of TI may improve
he accuracy of the Jensen model, but existing studies suggest different
elationship between the WDC and TI. With such inconsistency and
ncertainties, it becomes necessary to calibrate the coefficient (and the
elationship between 𝜃 and TI) more accurately. This calls for a new
pproach to solve the calibration problem using data-driven stochastic
ptimization.

We further consider another state-of-the-art flow control model
ased on a blade element theory discussed in [25]. This flow control
odel assumes a Gaussian shape of the stream-wise wake based on the

ifting line model, and the same Gaussian shape is also used to model
he lateral wake [41]. We refer to this model as the Gaussian wake
odel hereafter. This Gaussian wake model has two parameters: the
ake spreading coefficient 𝑘𝑤 and the proportionality constant 𝜎0. The

spreading coefficient 𝑘𝑤 is used to estimate the downstream effective
wake diameter, and the downstream width of the Gaussian profile is
determined by multiplying the Gaussian proportionality constant 𝜎0
by the effective wake diameter. These parameters depend on the site-
specific wind conditions and the wind farm layout and influence the
prediction accuracy of the wake model [25]. We present a data-driven
stochastic optimization approach using operational wind farm data to
calibrate these parameters.

3. Stochastic Optimization for Wake Calibration (SOWC)

We formulate the calibration problem using data-driven stochastic
optimization in Section 3.1 and present a new approach to efficiently
solve the problem in Section 3.2.

3.1. Problem formulation

Consider an engineering wake model (e.g., the Jensen wake model)
which generates a response vector 𝑦𝑐 (𝜃; 𝑥) for a given weather condition
𝑥 (e.g., wind speed) and a set of parameters 𝜃. For instance, 𝜃 is one-
dimensional in (2) or two-dimensional, i.e., [𝑝, 𝑞]⊺ in (3). The accuracy
of the wake model is then evaluated by comparing its generated re-
sponse 𝑦𝑐 (𝜃; 𝑥) ∈ R𝑏 with the observed response at the same input 𝑥.
Consider a dataset containing the field observations  = {⟨𝑥𝑗 , 𝑦𝑗⟩}𝑛𝑗=1,
𝑥𝑗 ∈ R𝑎 being the operational input condition and 𝑦𝑗 ∈ R𝑏 being
the output response vector at multiple turbines in a wind farm. In
particular, 𝑦𝑗 is a vector containing the observed wind power at each of

𝑐
the 𝑏 downstream turbines, whereas 𝑦 (𝜃; 𝑥𝑗 ) results from the output of
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the wake model that simulates the power at each of those 𝑏 downstream
turbines with the same input vector 𝑥𝑗 . In this study, we consider steady
state conditions. Hence, ⟨𝑥𝑗 , 𝑦𝑗⟩ represents the average measurements
during a short time interval, e.g., 10 min.

We seek a calibration parameter that minimizes the difference
between the wake model output and observed data. We refer to this
difference as loss, and denote it by 𝓁(𝑦𝑐 (𝜃; 𝑥), 𝑦) ∶ R𝑏 → R. Since both
𝑦𝑐 (𝜃; 𝑥) and 𝑦 are vector-valued, we consider the loss to be the 𝐿2 norm
of their difference, i.e., the sum of their squared residuals. Then we can
formulate the calibration problem as

min
𝜃

𝑓 (𝜃) ∶= E𝑋,𝑌 [𝓁(𝑦𝑐 (𝜃;𝑋), 𝑌 )]

subject to 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥,
(4)

where 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 are the lower and upper bounds for 𝜃. Here,
we assume that the function 𝑓 (𝜃) is bounded below and its gradient
Lipschitz continuous, that is, there exists 𝐿 < ∞ such that ‖∇𝜃𝑓 (𝜃1) −
∇𝜃𝑓 (𝜃2)‖ ≤ 𝐿‖𝜃1 − 𝜃2‖. The input 𝑋 and output 𝑌 follow an unknown
joint distribution function. Further, the wake model output 𝑦𝑐 (𝜃; 𝑥) does
not take a closed-form expression. Therefore, we solve this problem
based on the principle of empirical risk minimization with the objective
function of

𝐹 (𝜃) ∶= 1
||

∑

⟨𝑥𝑗 ,𝑦𝑗 ⟩∈
𝓁(𝑦𝑐 (𝜃; 𝑥𝑗 ), 𝑦𝑗 )

with || being the total sample size of the operational dataset .
When the data size is large, using the entirety of the available

dataset for risk minimization may not be efficient, because it needs
to run the wake model for every data point. It may also result in
overfitting which will give inaccurate parameter values. To address it,
we employ a stochastic optimization approach that uses random subsets
of the data set. Suppose 𝑛 (𝑛 ≪ ||) data points are randomly chosen
from the entire dataset . Then, we estimate the expected value in (4)
with a sample average approximation, i.e.,

𝐹 (𝜃) ∶= 1
|(𝜃)|

∑

⟨𝑥𝑗 ,𝑦𝑗 ⟩∈(𝜃)
𝓁(𝑦𝑐 (𝜃; 𝑥𝑗 ), 𝑦𝑗 ) (5)

with |(𝜃)| being the sample size of the subset sampled from the
data, (𝜃) ⊆ . It is assumed, in the presence of a large , that
𝐹 (𝜃) converges to 𝑓 (𝜃) almost surely, as the size of (𝜃) grows large.
Despite a common strategy for sampling, i.e., a fixed subset of data to
use throughout the optimization, we show subsets as functions of the
parameter value gain more efficiency; we will discuss this further in
the next section.

3.2. Adaptive trust-region based optimization

To solve the above optimization problem, we use a TR based
method [42]. The TR method iteratively approximates the true ob-
jective function 𝑓 (𝜃) by creating an easy-to-handle local model in a
small neighborhood using randomly chosen subsets of data. Optimizing
this local model within that neighborhood provides a new candidate
solution to the true objective function if accepted, as an improved
solution updates the parameter value towards the optimality.

Specifically, suppose that 𝜃𝑘 is the current recommended parameter
value and (𝜃𝑘) is the subset of data drawn from the entire dataset 
at the 𝑘th iteration. Let 𝑀𝑘(𝜃) denote the local surrogate model at the
𝑘th iteration that approximates the true loss function 𝑓 (𝜃) around 𝜃𝑘 in
the region of size 𝛥𝑘. This region, denoted by 𝑘, is often a closed ball
around the incumbent solution 𝜃𝑘, i.e., 𝑘 = {𝜃 ∶ ‖𝜃−𝜃𝑘‖2 ≤ 𝛥𝑘}. Then
we find the candidate of the next incumbent 𝜃𝑘+1 that minimizes 𝑀𝑘(⋅)
in 𝑘. Thus, the TR radius, 𝛥𝑘, limits the size of the next step.

Note that we cannot compute the gradient of the objective function
to get the next incumbent, because the functional form of 𝓁(⋅) (or 𝑦𝑐 (⋅))
is unknown. That is, direct observations of gradients, ∇𝜃𝓁(𝑦𝑐 (𝜃; 𝑥𝑗 ), 𝑦𝑗 ),
are unavailable. This is why we employ the derivative-free stochastic
optimization by building a local model 𝑀 (𝜃) (typically a quadratic
𝑘
function) using estimated objective functions at multiple 𝜃s within 𝑘.
Let 𝛩𝑘 = {𝜃𝑘, 𝜃

(𝑗)
𝑘 ∈ 𝑘, 𝑗 = 1, 2,… , 𝑚} be a set including 𝜃𝑘 and

several other solutions around it. With interpolation, we fit a 𝑀𝑘(⋅)
whose gradient and higher order derivatives will capture the behavior
of the objective function around 𝜃𝑘. This set needs to be poised such
that the matrix

𝑃 (𝛷,𝛩𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜙1(𝜃(1)𝑘 ) 𝜙2(𝜃(1)𝑘 ) ⋯ 𝜙𝑚(𝜃(1)𝑘 )

𝜙1(𝜃(2)𝑘 ) 𝜙2(𝜃(2)𝑘 ) ⋯ 𝜙𝑚(𝜃(2)𝑘 )
⋮ ⋮ ⋱ ⋮

𝜙1(𝜃(𝑚)𝑘 ) 𝜙2(𝜃(𝑚)𝑘 ) ⋯ 𝜙𝑚(𝜃(𝑚)𝑘 )

⎤

⎥

⎥

⎥

⎥

⎦

,

s nonsingular with a polynomial basis 𝛷(𝑧) = (𝜙1(𝑧), 𝜙2(𝑧),… , 𝜙𝑚(𝑧))
n R𝑑 . The local model 𝑀𝑘(𝜃) =

∑𝑚
𝑗=1 𝛽𝑗𝜙

𝑗 (𝜃) is constructed as a Taylor-
ike approximation where 𝜷̂ = (𝛽1, 𝛽2,… , 𝛽𝑚) is obtained by solving the
ystem of linear equations

(𝛷,𝛩𝑘)𝜷̂ = (𝐹 (𝜃(1)𝑘 ), 𝐹 (𝜃(2)𝑘 ),… , 𝐹 (𝜃(𝑚)𝑘 ))⊺. (6)

ith a quadratic basis the model is 𝑀𝑘(𝜃) = 𝛽1+(𝜃−𝜃𝑘)⊺(𝛽2,… , 𝛽𝑑+1)+
1
2 (𝜃 − 𝜃𝑘)⊺𝐻𝑘(𝜃 − 𝜃𝑘), where 𝐻𝑘 is an approximated Hessian using

𝑑̂+2,… , 𝛽𝑚. The number of points needed to build the model 𝑚 de-
pends on the dimension of the problem 𝑑 and the order of polynomial
interpolation. For a quadratic 𝑀𝑘(⋅) with a complete Hessian 𝑚 = 𝑑(𝑑+
3)∕2 [43], but when 𝑑 > 1, to reduce 𝑚 we can build a quadratic 𝑀𝑘(⋅)
with a diagonal Hessian, which will only need 𝑚 = 2𝑑 points [44]. For
a one-dimensional problem, generating a quadratic model needs 𝑚 = 2
oints, i.e., 𝛩𝑘 = {𝜃𝑘, 𝜃𝐿𝑘 , 𝜃

𝑅
𝑘 } as shown in Fig. 2, where 𝜃𝐿𝑘 = 𝜃𝑘 − 𝛥𝑘

and 𝜃𝑅𝑘 = 𝜃𝑘 + 𝛥𝑘. The performance of the TR optimization depends
on the quality of 𝑀𝑘(𝜃), which depends on the existence of 𝜷̂ and how
poised the set 𝛩𝑘 is. A good quality model will ensure that ‖∇𝜃𝑀𝑘(𝜃)−
∇𝑓 (𝜃)‖ ≤ (𝛥2

𝑘) for all 𝜃 ∈ 𝑘. Specifically, for the derivative-free TR,
additional quality steps to ensure a lock-step between ∇𝜃𝑀𝑘(𝜃𝑘) and 𝛥𝑘
is needed: if 𝛥𝑘 is too large as compared to the gradient of the model
at 𝜃𝑘, we reduce the TR radius [45]. This critical step can be relaxed
for those iterations that are not near optimality for faster performance.

The left panel of Fig. 2 illustrates a single iteration where the next
candidate solution 𝜃𝑘+1 is selected by minimizing the local model 𝑀𝑘(𝜃)
within 𝛥𝑘 distance from the incumbent solution 𝜃𝑘. The candidate
point is then accepted if the loss estimate also sufficiently reduces,
in comparison to the reduction in the model value, by moving to the
candidates solution from 𝜃𝑘. This test is done through computing what
is called the success ratio, 𝜌̂𝑘 = reduction in the loss estimates

reduction in the model and checking
whether it is at least as large as the success threshold 𝜂1, which is a
user-specified parameter of the TR algorithms. If successful, as a vote
of confidence, the next iteration starts with 𝛥𝑘+1 > 𝛥𝑘. Otherwise, we
let 𝜃𝑘+1 = 𝜃𝑘 and reduce the TR radius (𝛥𝑘+1 < 𝛥𝑘) to look more closely
in that region. The convergence of this algorithm to a (local) optimum
is guaranteed when 𝛥𝑘 → 0 as 𝑘 → ∞ almost surely. The TR radius
converges to zero because as the algorithm approaches the optimal
solution, it keeps reducing the radius in pursuit of a better solution
which it cannot find.

Since the local surrogate model 𝑀𝑘(𝜃) is built on the estimates of
the loss function using a subset of the data, large stochastic errors
can substantially impact the algorithm’s performance. One approach
to address this sensitivity to noise is to reduce the stochastic error by
increasing the sample size only when distinguishing better solutions
requires higher precision. The fundamental idea in this adaptive sam-
pling strategy is that in the stochastic setting we use smaller subsets of
data when the current incumbent is far away from the optimal solution
and use larger subsets as we near optimality. This adaptive sampling
allows us to balance the computational effort over iterations. Shashaani
et al. [43] devised an almost surely convergent stochastic optimization
algorithm that leverages adaptive sampling within a TR framework by
using higher orders of the TR radius as a measure of optimality gap.
Their algorithm is referred to as Adaptive Sampling TR Optimization
for Derivative-Free Stochastic Oracles (ASTRODF).
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Specifically, the sample size (𝜃𝑘) adapts the standard error of the
stimator as small as a threshold that equals 𝜅𝛥2

𝑘∕
√

𝜆𝑘, that is,

|(𝜃𝑘)| = min

⎧

⎪

⎨

⎪

⎩

𝑛 ≥ 𝜆𝑘 ∶

√

𝜎̂2𝐹 (𝜃𝑘)
𝑛

≤ 𝜅
√

𝜆𝑘
𝛥2
𝑘

⎫

⎪

⎬

⎪

⎭

, (7)

where 𝜎̂2𝐹 (𝜃𝑘) is the variance estimate of the loss value 𝓁(𝑦𝑐 (𝜃𝑘; 𝑥𝑗 ), 𝑦𝑗 )
at each individual sample in (5), assuming each data point is indepen-
dently and identically sampled from the dataset . Hence the left-hand
side (LHS) in (7) is the standard error of the loss estimate 𝐹 (𝜃𝑘). In the
right-hand side (RHS), 𝜅 is a positive constant, and 𝜆𝑘 = (log 𝑘) is a
slowly increasing deterministic sequence that serves two purposes: (i)
it deflates the optimality threshold and enforces larger samples in the
later iterations; (ii) it ensures that sample size grows large even if by
chance the standard error at later iterations is small. With the condition
in (7), the adaptive sampling strategy ensures that the sample size is
initially small but increases as the TR radius becomes small indicating
that the incumbent solution is hard to beat. Note that the sample size at
each iteration becomes stochastic and is calculated using the optimality
error and the TR radius 𝛥𝑘 during that iteration. Fig. 3 illustrates the
idea of adaptive sampling, where the horizontal blue line represents the
threshold of standard error, i.e., RHS of the inequality in (7), at a fixed
solution. The height of the vertical bars represents the standard error of
the loss function estimate at that solution, and the left to right direction
shows this error decreases as the sample size increases. We stop adding
more samples as soon as the estimated vertical bars drop below the
threshold, indicating that the estimation error, is commensurate with
the optimality gap.

In the new improvement to this algorithm that we describe in
Section 4, we integrate variance reduction to ASTRODF to shorten the
bars (see the gray bars in Fig. 3) and stop sampling earlier without
losing any convergence guarantees. In this new framework, we not only
set the size of the samples adaptively, but we also decide which points
to be added to the samples.

4. Stratified adaptive sampling and Trust-Region optimization

For efficiency improvement and robustness, we integrate stratified
sampling within ASTRODF. We first describe the stratified sampling in
Section 4.1 and propose the new algorithm in Section 4.2

4.1. Stratified sampling

Stratified sampling is a variance reduction technique that divides
the input domain  into multiple strata due to the erratic behavior

and impact of the data from each stratum on the objective function s
Fig. 3. Adaptive sampling stops adding samples once the standard error drops below
an approximate optimality gap. The stopping occurs faster with the stratified sampling
(orange) than without (gray) because it further reduces the standard error with the
same number of samples.

estimate. Instead of assuming that all the data follows a single distri-
bution, we allow each stratum to have a unique data distribution. This
design directly uses the heterogeneity in the input data to our benefit.
The central idea is that we allocate portions of the budget (overall
samples) to each stratum based on its contribution to the variance of the
objective function estimator. By allocating more computational budget
to the more important strata, we reduce the estimation variance that
leads to the acceleration of our calibration procedure.

We divide the available data  into 𝐼 disjoint strata such that
 = ∪𝐼

𝑖 𝑖 and 𝑖 ∩𝑖≠𝑖′ 𝑖′ = ∅; we will discuss how to divide  to form
𝐼 strata in Section 4.2. Let 𝑝𝑖 = |𝑖|∕|| be the ratio of total points in
tratum 𝑖 and 𝜎̂𝐹 ,𝑖(𝜃) be the estimated output variability at 𝜃 in stratum 𝑖

for 𝑖 = 1, 2,… , 𝐼 . If the estimated objective in stratum 𝑖 is 𝐹𝑖(𝜃), i.e., the
sample average of the loss value at stratum 𝑖, with 𝑖(𝜃) ⊆ 𝑖 being the
sample set drawn from stratum 𝑖 and 𝑛𝑖(𝜃) = |𝑖(𝜃)|, then the overall
estimated mean is

𝐹 (𝜃) =
𝐼
∑

𝑖=1
𝑝𝑖𝐹𝑖(𝜃) (8)

and the estimated sample variance is

V̂ar(𝐹 (𝜃)) =
𝐼
∑

𝑖=1
𝑝2𝑖 V̂ar(𝐹𝑖(𝜃)) =

𝐼
∑

𝑖=1

𝑝2𝑖 𝜎̂
2
𝐹 ,𝑖(𝜃)

𝑛𝑖(𝜃)
, (9)

with 𝜎̂2𝐹 ,𝑖(𝜃) = (𝑛𝑖(𝜃) − 1)−1‖𝓁(𝑦𝑐 (𝜃;𝒙𝑖), 𝒚𝑖) − 𝐹𝑖(𝜃)𝟏𝑛𝑖(𝜃)‖
2
2, where 𝟏𝑛𝑖(𝜃)

s an 𝑛𝑖(𝜃)-dimensional vector of ones and 𝓁(𝑦𝑐 (𝜃;𝒙𝑖), 𝒚𝑖) is a vector
f loss functions for stratum 𝑖 containing data points ⟨𝑥𝑗 , 𝑦𝑗⟩ ∈ 𝑖(𝜃).
he sample variance in (9) is proven [46] to be smaller than the
ample variance without stratification and the difference between the



P. Jain et al.

o

N

4

t
d
s
t
𝐹
t
p
a
H
i
r

a
t
i
t
e
r
a
w
s
r
f
i

e
s
r
b
w
(

𝜆

u
m
t

Fig. 4. Stratification with CART partitions the data based on TI.

two is maximized when 𝑛𝑖(𝜃), the sample size for a given 𝜃 from 𝑖, is
proportional to 𝑝𝑖 and 𝜎̂𝐹 ,𝑖(𝜃), i.e.,

𝑤𝑖(𝜃) =
𝑛𝑖(𝜃)

∑𝐼
𝑗=1 𝑛𝑗 (𝜃)

=
𝑝𝑖𝜎̂𝐹 ,𝑖(𝜃)

∑𝐼
𝑗=1 𝑝𝑗 𝜎̂𝐹 ,𝑗 (𝜃)

. (10)

There are several questions in designing an integrated framework
f TR optimization with adaptive and stratified sampling:

(i) How to stratify the input space and how much does that cost?
(ii) For each stratum, how to adaptively allocate the budget and when

to stop adding samples?
(iii) How to reuse observations and data utilized in previous itera-

tions?

ext, we describe the new algorithm that addresses all these questions.

.2. Stratified-ASTRODF with dynamic weights (SOWC-1)

Before successful stratified sampling, we need successful stratifica-
ion (or partitioning) strategies. An effective way for stratification is to
ivide the data such that within-stratum variance is small and between-
tratum variance is large [47]. The ideal stratification should minimize
he total variance in (9). However, the variance of the estimated loss
̂ (𝜃) depends on the incumbent 𝜃, implying that we need to partition
he data at every visited solution. But doing so incurs additional com-
utational burden. In a previous study, Liu et al. [28] demonstrate
dynamic stratification integrated with stochastic gradient methods.
owever, partitioning with a small dataset drawn in each iteration may

ncrease the stochasticity during the search procedure and ultimately
educe the efficiency.

As a remedy, we assume that the physical response variance 𝜎𝑌
is closely connected to the loss variance 𝜎𝐹 (𝜃) irrespective of 𝜃 and
synchronously partition the input data before the optimization. Al-
hough this use of proxy variance does not precisely track the change
n the output variance at different WDCs in the search space, it has
he advantage of being computed only once and reused at every it-
ration. To divide the input space, we borrow the classification and
egression tree (CART) idea and form the 𝐼 disjoint strata with 𝐼 being

user-specified parameter of the algorithm. CART groups the data
ith similar characteristics together by minimizing the overall sum of

quared errors [48]. It helps achieve the minimum total variance of the
esponse outputs. Fig. 4 shows the application of CART for stratification
or a single experiment. In this work we have used TI to divide the data
nto multiple strata as TI is closely related to the variance.

The next challenge is how to initiate the budget allocation for
ach stratum to estimate their variance before invoking the adaptive
ampling. Given the trajectory of the search and all the data used until
ight before iteration 𝑘, this initial sample size for stratum 𝑖, denoted
y 𝜆𝑘,𝑖, would remain unchanged through sampling in iteration 𝑘. First,
e use the most recent budget allocation 𝑤𝑖(𝜃𝑘) for stratum 𝑖 following

10). Then the initial sample size choice for stratum 𝑖 will be
0 ( 0 0 )
𝑘,𝑖 = ⌈𝑛 +𝑤𝑖(𝜃𝑘) × max{𝑛all, 𝜆𝑘} − 𝑛 𝐼 − 0.5⌉, (11)
where 𝑛0 and 𝑛0all are user-specified parameters representing the min-
imum sample size for each stratum and the minimum overall sample
size. We allocate at least 𝑛0 samples at each stratum to avoid too large
estimation error at the beginning. For illustration, suppose we have
𝐼 = 2 strata with the most recent weights 𝑤1(𝜃𝑘) = 0.3 and 𝑤2(𝜃𝑘) = 0.7,
assuming the lower bound at an early iteration is 𝜆𝑘 = 10, and the
minimum size parameters are 𝑛0 = 2, 𝑛0all = 40. This gives 𝜆𝑘,1 = 13
and 𝜆𝑘,2 = 27 as the initial sample size for each of the two strata. If we
were at a much later iteration with, say, 𝜆𝑘 = 50, these numbers would
change to 𝜆𝑘,1 = 16 and 𝜆𝑘,2 = 34.

Using 𝜆𝑘,𝑖’s, we adaptively determine the initial sample size of each
stratum at the 𝑘th iterate 𝜃𝑘. Recall that the sample size is decided
based on the inequality in (7) [43], where the LHS is the estimation
error and the RHS is the threshold (indicating the optimality gap).
With stratified sampling, the variance estimate is given by V̂ar(𝐹 (𝜃))
in (9). For the RHS, we employ the same threshold in (7) with some
modifications. Specifically, we replace the squared TR radius with the
estimated loss itself. While the local optimality in TR is measured by
the square of the model gradient norm that is kept in lock-step with
the TR radius, we also know that 𝐹 (𝜃𝑘) = 𝑝(𝛥2

𝑘) because the models
constructed need to have sufficient quality, ensured by correct placement
of the solutions in 𝑘. Hence, we decide the sample size of each stratum
as

(𝑁𝑖(𝜃𝑘) 𝑖 = 1, 2,… , 𝐼)

= min

{

𝑛𝑖 ≥ 𝜆𝑘,𝑖 ∀𝑖 = 1, 2,… , 𝐼 ∶
√

V̂ar(𝐹 (𝜃𝑘)) ≤
1

√

𝜆𝑘
𝐹 (𝜃𝑘)

}

.

(12)

In (12), there are two major modifications to the adaptive sampling
rule in (7). First, the LHS now uses the function estimates via strat-
ified sampling instead of the TR radius directly. This modification is
important, because it avoids algorithm’s sloppiness at the beginning
due to the inappropriate choice of initial TR size, which is a user-
specified parameter. In other words, by this replacement we can reduce
the sensitivity of the algorithm to its parameters; note that we remove
the constant parameter 𝜅 here too. Additionally, this change in the
sampling rule ensures that in iteration 𝑘, all visited solutions 𝜃 ∈
𝛩𝑘 ∪ {𝜃𝑘+1} determine samples needed for their estimate’s precision
sing their own 𝐹 (𝜃), instead of using a fixed RHS via 𝛥2

𝑘 for all 𝜃. Our
odified adaptive sampling rule resembles progressively controlling

he loss’ coefficient of variation, which is defined as CV(𝑍) = 𝜎(𝑍)
E[𝑍] for

a random variable 𝑍. Lastly, we collectively consider all strata when
adding new samples, rather than doing an adaptive sampling with each
stratum separately. This integration of stratified sampling and adaptive
sampling helps obtain maximum efficiency.

As listed in Algorithm 2, at every new WDC value for which we need
to evaluate the loss during iteration 𝑘, we first use the information ob-
tained for 𝜃𝑘, the recommended solution from iteration 𝑘−1. With (11)
we determine the initial sample size for each stratum through 𝑤𝑖(𝜃𝑘).
Once new samples drawn for 𝜃𝑘, we use those most updated 𝑤𝑖(𝜃𝑘)
values for the following solutions to be visited, e.g., the poised set for
model construction and the candidate incumbent for the next iteration.
Why is the choice of initial sample size for each stratum crucial? If
our initial sample size is too small, our weights can be inadequate,
and eventually, we will spend a lot of time getting to a good point
in the search trajectory. On the other hand, large initial sample sizes
can guarantee a good estimation of weights at the expense of utilizing
a lot of our computational budget. After initialization of samples in
each stratum, if the stopping time condition (12) is not satisfied, we
add a single point, update the standard error from (9) and recheck the
stopping time condition. We use what we call the selective randomized
method, inspired by [49,50], to determine the stratum to which this
point should be added. Based on this strategy, samples are added one
by one to randomly selected strata according to the probability mass

function (pmf) described above until the stopping criteria is met. At
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Table 1
Stratification details for the two suggested methods in one experimenta.

Bins TI range Probability mass (𝑝𝑖) SOWC-1 SOWC-2

𝜎̂𝐹 ,𝑖(𝜃) 𝑤𝑖(𝜃) 𝜎̂𝑌 ,𝑖 𝑣𝑖
1 0.08–0.40 0.32 0.01 0.27 0.02 0.24
2 0.40–0.54 0.27 0.01 0.23 0.04 0.29
3 0.54–0.65 0.17 0.01 0.14 0.05 0.21
4 0.65–1.48 0.24 0.03 0.36 0.04 0.26

aFor SOWC-1 𝜎̂𝐹 ,𝑖(𝜃) and 𝑤𝑖(𝜃) values are reported at 𝜃 from the last iteration.

stopping, ideally the ratio of the number of samples from stratum 𝑖 to
he total number of samples should be equal to the weight of that stra-
um, i.e., 𝑤𝑖(𝜃𝑘) = 𝑞𝑖(𝜃𝑘) where 𝑞𝑖(𝜃𝑘) ∶= 𝑁𝑖(𝜃𝑘)∕

∑𝐼
𝑗=1 𝑁𝑗 (𝜃𝑘). However,

since in the adaptive setting, the new samples are added randomly, it
is possible that for some strata, 𝑞𝑖(𝜃𝑘) is greater or smaller than the
corresponding weight. To use the optimal allocation information in the
adaptive sampling, we estimate the probability of adding the point to
stratum 𝑖 as

𝜋d
𝑖 = Pr{selecting stratum 𝑖} =

𝑤𝑖(𝜃𝑘)I{𝑤𝑖(𝜃𝑘) > 𝑞𝑖(𝜃𝑘)}
∑𝐼

𝑗=1 𝑤𝑗 (𝜃𝑘)I{𝑤𝑗 (𝜃𝑘) > 𝑞𝑗 (𝜃𝑘)}
. (13)

Using (𝜋d
1 , 𝜋

d
2 ,… , 𝜋d

𝐼 ) obtained from dynamic weights in (13) as the pmf
for stratum selection guarantees that those strata whose allocation is
lower than optimal receive more likelihood for selection. The adaptive
sampling in the derivative-free setting has to be conducted not just for
the incumbent solutions, but also for those solutions that will be used
for the local model construction and those suggested as the candidate
incumbents by minimizing the local model. Recall that for large sample
sizes, the standard error with random sampling will be more than the
standard error with stratified sampling. Thus with the new stratified
adaptive sampling strategy, we stop at a smaller sample size; see the
gray bars in Fig. 3, as compared to the orange bars. We refer to
the proposed stratified variant of ASTRODF with dynamic weights as
SOWC-1.

4.3. Stratified ASTRODF with fixed weights (SOWC-2)

In SOWC-1, the role of the dynamic weights computed by (10)
as a budget allocation rate is in choice of initial sample size per
stratum (11) and adaptive addition of samples through (13). We now
consider a variant of the proposed approach that does not allow budget
allocation ratio for each stratum to vary across iterations. We adopt this
fixed budget allocation strategy as an alternative because the dynamic
scheme causes a complexity, as every new sample changes 𝜎̂𝐹 ,𝑖(𝜃) for
all 𝜃 visited at iteration 𝑘, and hence changes the weights themselves.
In short, this dynamic change in the weights can incur additional
variability in the algorithm performance. For the sake of more stability,
we consider a static weight for each stratum to lower the variability
throughout the search, as suggested in our earlier work [51], i.e.,

𝑣𝑖 =
𝑝𝑖𝜎̂𝑌 ,𝑖

∑𝐼
𝑗=1 𝑝𝑗 𝜎̂𝑌 ,𝑗

. (14)

Similar to the logic we use for the stratification, these fixed weights
are based on the assumption that the distribution of our estimated loss
function will closely mimic the distribution of the observed outputs.
One advantage of this static weight scheme is the ease of implemen-
tation, since the weights are same for each iterate, however, it can
result in skewed estimates as it does not take into account the sampled
distribution. In SOWC-2, we also use the static weights in selecting a
stratum for adaptive addition of new samples, akin to (13) but with 𝑣𝑖
nstead of 𝑤𝑖(𝜃𝑘); we call these fixed probabilities (𝜋f

1, 𝜋
f
2,… , 𝜋f

𝐼 ).
Table 1 shows the difference between the computational budget

llocation weights 𝑤𝑖(𝜃𝑘) and 𝑣𝑖 in SOWC-1 and SOWC-2, respectively,
n one of our experiments. In SOWC-1, more data points from the high
I condition (the last stratum) are used in the calibration, whereas
OWC-2 assigns similar efforts across multiple strata. We note that
espite using fixed weights in SOWC-2, the TI interval in each stra-
um is different, rendering the stratified sampling philosophy: sample
ess from less important weather conditions and more from important
onditions for the calibration purpose.

Algorithm 1 summarizes the procedure of SOWC-1 and SOWC-2,
here we combine stratified sampling with the updated adaptive sam-
ling criteria (12) that is detailed in Algorithm 2, to use fixed/dynamic
eights and randomized allocation.

Algorithm 1 S-ASTRODF for Parameter Calibration
1: input: Available dataset , initial solution 𝜃0 and TR radius 𝛥0,

number of strata 𝐼 , maximum budget 𝑇 , minimum sample size for
each stratum 𝑛0 ≥ 2, total minimum sample size 𝑛0all ≥ 𝑛0𝐼 , and
success threshold 𝜂1 > 0.

2: initialization: Set calls = 0 and iteration 𝑘 = 0. Determine
the strata by CART and compute their properties (𝑖, 𝑝𝑖, 𝜎̂𝑌 ,𝑖, 𝑣𝑖)𝐼𝑖=1
including fixed weights 𝑣𝑖 following (14).

3: while calls < 𝑇 do
4: Generate 𝛩𝑘, a poised set within 𝑘.
5: Estimate 𝐹 (𝜃) using Algorithm 2 for all 𝜃 ∈ 𝛩𝑘.
6: Set calls = calls +∑

𝜃∈𝛩𝑘

∑𝐼
𝑖=1 𝑁𝑖(𝜃).

7: Build model 𝑀𝑘(⋅) by interpolation using (6) with (𝛩𝑘, 𝐹 (𝛩𝑘)).
8: If the model gradient ∇𝑀𝑘(𝜃𝑘) is small relative to 𝛥𝑘, shrink the

TR and go to step 4.
9: Minimize 𝑀𝑘(⋅) within 𝑘 to obtain a candidate solution 𝜃𝑘+1.
0: Estimate 𝐹 (𝜃𝑘+1) using Algorithm 2.
1: Set calls = calls +∑𝐼

𝑖=1 𝑁𝑖(𝜃𝑘+1).
2: Compute the success ratio

𝜌̂𝑘 =
𝐹 (𝜃𝑘) − 𝐹 (𝜃𝑘+1)

𝑀𝑘(𝜃𝑘) −𝑀𝑘(𝜃𝑘+1)
.

13: if 𝜌̂𝑘 > 𝜂1 then
14: Set 𝜃𝑘+1 = 𝜃𝑘+1 and 𝛥𝑘+1 > 𝛥𝑘.
15: else
16: Set 𝜃𝑘+1 = 𝜃𝑘 and 𝛥𝑘+1 < 𝛥𝑘.
17: end if
18: Set dynamic 𝑤𝑖(𝜃𝑘) at new incumbent solution following (10).
19: Set 𝑘 = 𝑘 + 1 and go to step 4.
20: end while
21: output: Final calibrated parameter 𝜃𝑘 and its estimated loss 𝐹 (𝜃𝑘).

Algorithm 2 Stratified Adaptive Sampling with Dynamic Weights
(SOWC-1) or Fixed Weights (SOWC-2)
1: input: TR radius 𝛥𝑘, deflation factor 𝜆𝑘, details of the

strata including dynamic weights for the incumbent solution
{(𝑖, 𝑝𝑖, 𝜎̂𝑌 ,𝑖, 𝑣𝑖, 𝑤𝑖(𝜃𝑘)), 𝑖 = 1, 2,⋯ , 𝐼}, and solution of interest 𝜃.

2: for 𝑖 = 1, 2,⋯ , 𝐼 do
3: Compute 𝜆𝑘,𝑖 in (11) using 𝑤𝑖(𝜃𝑘) if SOWC-1, or 𝑣𝑖 if SOWC-2.
4: Draw 𝑁𝑖(𝜃) = 𝜆𝑘,𝑖 random samples from 𝑖.
5: Form 𝑖(𝜃) to compute 𝜎̂𝐹 ,𝑖(𝜃).
6: If SOWC-1, update 𝑤𝑖(𝜃).
7: end for
8: Calculate 𝐹 (𝜃) in (8) and V̂ar(𝐹 (𝜃)) in (9).
9: while V̂ar(𝐹 (𝜃)) > 𝜅2

𝜆𝑘
𝐹 (𝜃)2 do

10: If SOWC-1, draw stratum 𝑗 from pmf (𝜋d
𝑖 )

𝐼
𝑖=1.

11: If SOWC-2, draw stratum 𝑗 from pmf (𝜋f
𝑖 )
𝐼
𝑖=1.

12: Draw a random data point from 𝑗 .
13: Add to the sample set 𝑗 and increase 𝑁𝑗 (𝜃) by 1.
4: Update 𝜎̂𝐹 ,𝑗 (𝜃), V̂ar(𝐹 (𝜃)), and 𝐹 (𝜃) ∀𝑖 = 1, 2,⋯ , 𝐼 .
5: If SOWC-1, update 𝑤𝑖(𝜃) ∀𝑖 = 1, 2,⋯ , 𝐼 .
6: end while
7: output: Estimated loss 𝐹 (𝜃) and sample sizes 𝑁𝑖(𝜃𝑘) ∀𝑖 = 1, 2,⋯ , 𝐼 .
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Fig. 5. Overall procedure consists of several macro-replications of dividing the data into modeling set, used for training and optimization, and validation set, used for testing and
valuation. The outputs shown in the bottom right box illustrate the loss trajectory and final solution with a fixed computational budget across the macro-replications.
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Table 2
Information about the two wind farms.

Wind farm Type Data size Number of turbines Layout

WFa Offshore 9742 Around 30 Regular
WFb Land-based 1659 Around 40 Irregular

5. Implementation results

We use the multi-turbine extension of the Jensen wake model which
takes into account multiple wakes and partial shadows [17] to calibrate
the WDC in (1)–(2). We use the 𝐿2 loss, i.e., 𝓁(𝑦𝑐 (𝜃; 𝑥), 𝑦) = ‖𝑦𝑐 (𝜃; 𝑥) −
𝑦‖22 in all of our experiments. However, other types of loss functions,
e.g., 𝐿1 loss, can easily and flexibly be considered. We first calibrate
the WDC as a constant value, and then consider the TI dependent
calibration suggested in [22]. To provide reproducible implementation,
our code, as well as the dataset used in Section 5.3, can be found in
https://github.com/sshashaa/s-astro-df.git.

5.1. Data description

We have data collected from two wind farms: WFa an offshore
wind farm, and WFb an onshore wind farm. Table 2 summarizes some
details of the two wind farms. Fig. 6 shows the modified layout of WFa
with some turbines omitted due to confidentiality. The dataset consists
of 10-min average power generated by each wind turbine along with
ambient wind conditions collected in the met mast, such as the 10-min
average free-flow wind speed, 10-min average wind direction, TI, etc.
Each wind farm has one meteorological tower (met mast). The turbine
spacing between each row in WFa is about 11 times rotor diameter.

The power generated by wind turbines is normalized by dividing
each term by the maximum available value. We have used data when
the met mast is not under wake, where wind direction ranges from 165◦

to 315◦ in WFa and 165◦ to 195◦ in WF2. Moreover, TI ranges from 0.1
to 1.5 and wind speed ranges from 3 to 15 m/s in our dataset for WFa.
For WFb, TI ranges from 0.3 to 2.5 and wind speed ranges from 4 to
13 m/s. Due to the data confidentiality required by the data provider,
we omit more details about the two wind farms.

The Jensen wake model estimates the incoming wind speed at each
turbine. But our dataset does not contain the incoming wind speeds
at downstream turbines. To compare the output from the Jensen wake
Fig. 6. Layout of WFa.

odel with actual measurements, we estimate the power curve using
ata in one of the upstream turbines closely located to the met mast.
or the power curve construction, we use B-splines [52]. Once Jensen
ake model outputs incoming wind speeds, we use the resulting power

urve to estimate the power outputs. For the thrust coefficient in Jensen
odel, we use the manufacturer’s provided values.

An outlook to the full procedure is depicted in Fig. 5. To evaluate
he performance of the proposed approach, we divide the data into two
ets: the modeling set () and the validation set (′). The modeling set
omprises of 70% of the data and is used exclusively for the parameter
alibration. We use the remaining 30% of data for evaluating the
alibration performance. We conduct the experiment 20 times (that is,
0 macro-replications) with different modeling and validation sets. For
ach experiment, we divide the modeling set into four strata (𝐼 = 4)
sing CART. The initial TR radius (𝛥0) is 0.08, and the success threshold
𝜂1) is 0.10. The minimum sample size for each stratum (𝑛0) is set at 2
nd the total minimum sample size (𝑛0all) is 40. The deflation factor 𝜆𝑘

is an increasing function of the iteration number 𝑘 and is set as 𝜆𝑘 =
80(log 𝑘)1.5. It increases exponentially with iteration number, ensuring
that towards the later half of the search we have good estimates for
MSE. We have restricted our search space to 𝜃 ∈ (0, 1).

5.2. Numerical results

This section reports the implementation results of the proposed
methods. We compare our approach with other stochastic optimization
methods along with the comparison of the optimally calibrated param-

eter values against the recommended values. The results are evaluated

https://github.com/sshashaa/s-astro-df.git
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Fig. 7. Comparison of the estimated power deficits for the optimally calibrated WDC (𝜃 = 0.053) and the standard value (𝜃 = 0.040) for WFa. Power deficit is computed as the
ifference of the estimated power output at each turbine and the maximum estimated power output amongst all the turbines.
Table 3
Comparison of MSE and estimated WDC for different methods for WFa. The second column summarizes the estimated WDC, the third column
summarizes the overall MSE, and columns four to size summarize the MSE for the turbines in the second, third, and fourth rows, respectively
(the value in the parenthesis is the standard error from 20 macro-replications).

Performance WDC (𝜃) MSE (×10−3)

Algorithm Overall 2nd row 3rd row 4th row

Ref. [17] 0.040 4.611 (0.023) 4.332 (0.022) 4.595 (0.026) 4.900 (0.028)
SOWC-1 0.053 (0.010) 4.574 (0.025) 4.194 (0.023) 4.601 (0.028) 5.045 (0.029)
SOWC-2 0.052 (0.019) 4.578 (0.025) 4.198 (0.023) 4.593 (0.028) 5.035 (0.029)
using MSE which is defined as the mean of squared errors for all the
turbines divided by the number of observations. We first summarize
point calibration results where the WDC is modeled as a constant value
for WFa and WFb, followed by the functional calibration results with
the WDC as a linear function of TI for WFa.

5.2.1. Point calibration
Table 3 first compares the results for WFa from the proposed

approach with those when the recommended value of 𝜃 = 0.040 for an
ffshore wind farm is employed. It summarizes the estimated WDC and
he normalized MSE evaluated over 20 validation sets. Our proposed
ethods, SOWC-1 and SOWC-2, suggest the WDC to be around 0.053
hich is slightly different from the recommended value. The third

olumn suggests that the proposed approach can reduce the overall
SE by 0.87%, compared to the recommended value. Further analysis

hows that our approach achieves 2.38% reduction of MSE for turbines
laced in the second row, while the MSEs are comparable for turbines
n the third and fourth rows. Overall, slightly higher MSEs at the
eference value of 0.04 indicate that using this default value may not be
ptimal, highlighting the need for wind farm-specific WDC calibration.

Figs. 7(a) and 7(b) shows the box plots of power deficits in the
urbines across different wind speeds when we optimally calibrate the

DC and blindly adopt the reference value for WFa. We observe clear
ifferences in the power deficit distributions in both cases. With the
ptimally calibrated value of 𝜃 = 0.053, Fig. 7(a) shows the maximum
ower deficit at the most downstream turbines is approximately 43%
ompared to the upstream turbines. On the contrary, when we employ
he recommended value of 𝜃 = 0.040, the maximum power deficit is
round 54% in Fig. 7(b). Further, compared to Figs. 7(b), 7(a) with
= 0.053 demonstrates that the range of power deficits among turbines

s smaller, compared to that with 𝜃 = 0.040. This result demonstrates
he advantage of calibrating the WDC value, specific to each wind farm,
sing its operational data.

Next, we compare our approach with alternative stochastic opti-
ization methods. Liu et al. [28] adopted the SG for wake decay
calibration and showed its superior performance over the Bayesian
approach. As the TR-based optimization and SG are two representative
stochastic optimization methods, we compare the performance of TR
with SG. To compare the performance of various algorithms we use
certain performance measures like mean-confidence interval curves.
Specifically, after a macro-replication is run we get a set of intermediate
solutions along with their corresponding budget. The MSE is then
evaluated at these intermediate solutions using the remaining 30% set,
the validation set, to get these performance measures.

Fig. 8(a) plots the mean-confidence interval curves for the normal-
ized MSE for WFa against the utilized budget for the original TR-based
algorithm (SOWC-TR) and SG (SOWC-SG). SOWC-TR exhibits a sudden
drop in the MSE value initially, implying fast convergence towards
optimal solution. SOWC-SG, on the other hand, requires more computa-
tional budget to converge towards the optimum which is a well-known
problem of SG. The slow convergence of SG can be attributed to the
noisy steps that the algorithm takes during each iteration. This is visible
in Fig. 8(b), which plots the mean-confidence intervals of the trajectory
of the WDC during the search for WFa. In SG the intermediate solution
is updated at each iteration and these frequent updates are computa-
tionally expensive. TR-based methods, on the other hand, update the
intermediate solution only when there is sufficient reduction in MSE.
The performance of SG also depends on the accuracy of the gradient
estimates. For problems like WDC calibration in engineering wake
models, the gradient cannot be expressed explicitly. Thus more compu-
tational budget is needed to get good estimates of the gradient. Overall,
the derivative free TR-based optimization approach, which eliminates
the need for good gradient estimates, exhibit many advantages over SG.

Figs. 9(a) and 9(b) show the box plots for the normalized MSE
and the estimated WDC, respectively for WFa. The MSE and estimated
WDC obtained from 20 macrorepliations of SOWC-TR have a smaller
spread (interquartile range), suggesting smaller variance amongst the
experiments. This is of particular importance in stochastic optimization
because it signifies the robustness of the algorithm. Comparing the
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Fig. 8. Comparison of stochastic gradient (SOWC-SG) and TR optimization (SOWC-TR) over 20 macro-replications with mean and 95% CI convergence curves for WFa. The MSE
and WDC are plotted against the number of times Jensen wake model is called during optimization.
Fig. 9. Comparison of the distribution of the outcome of SOWC-SG and SOWC-TR over 20 macro-replications gives mean MSE (×10−3) for SOWC-SG = 5.000 and for SOWC-TR
= 4.800 for WFa.
mean values of MSE of the two algorithms we can conclude that SOWC-
TR gives better results than SOWC-SG. Figs. 8 and 9 illustrate that
TR-based optimization can be efficiently used for WDC calibration.

Given that SOWC-TR provides superior performance than SOWC-
SG, we further compare the performance of SOWC-TR with its en-
hanced version with adaptive stratified sampling: SOWC-1 with dy-
namic weights and SOWC-2 with fixed weights. Even though SOWC-TR
performs better than SOWC-SG, from Figs. 9 and 11, we can see that
the output of SOWC-TR still has some outliers, indicating high variance.
We aim to reduce this variance by employing stratified sampling,
thus warranting more accurate estimates. This can be seen in the
convergence curves for normalized MSE (Fig. 10(a)). The confidence
intervals in Fig. 10(a) are much narrower for SOWC-1 and SOWC-2, as
compared to SOWC-TR. Further, during initial stages of optimization
the reduction of MSE for the stratified sampling methods is much
more than that of standard TR-based algorithm. This shows that by
using stratified sampling we get better estimates with higher certainty.
Looking at the trajectory of WDC in Fig. 10(b), we can see that the
estimated values of WDC for SOWC-1 and SOWC-2 are more uniform
across multiple macro-replications. The box plots for MSE (Fig. 11(a))
and WDC (Fig. 11(b)) show that SOWC-1 has no outliers and SOWC-2
has one outlier. This is extremely important because it shows that the
algorithms are less sensitive to input uncertainty.
There is a slight difference in the performance of SOWC-1 and
SOWC-2. SOWC-1 achieves slightly lower MSE (Figs. 10(a) and 11(a))
as compared to SOWC-2. This is expected because in SOWC-1 the
weights for stratified sampling are estimated using the variance of the
loss function, whereas in SOWC-2 the weights are fixed and do not
depend on the intermediate values of the WDC during the calibration
process. SOWC-1, thus, captures the behavior of loss more accurately
as compared to SOWC-2. This can be observed in Fig. 10 by the
amount of wriggling in the convergence curves for SOWC-2 and their
smoothness for SOWC-1. We also observe SOWC-1 tends to yield more
similar results in 20 different macro-replications, providing more robust
solutions. However, we would like to mention that even though SOWC-
1 marginally outperforms SOWC-2, SOWC-2’s ease of implementation
makes it a very handy tool.

In summary, both SOWC-1 and SOWC-2 outperform their alter-
natives, including SOWC-SG and SOWC-TR, by achieving faster con-
vergence with higher certainty. Stratified sampling further improves
the performance of TR-based optimization, making it more robust and
efficient.

Next, we investigate the performance of our proposed calibration
approach using SOWC-1 and SOWC-2 for the land-based wind farm,
WFb. Table 4 compares the results of SOWC-1 and SOWC-2 with those
of the recommended value of 𝜃 = 0.075 for land-based wind farms.
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Fig. 10. Comparison of the original TR optimization (SOWC-TR) and the proposed approaches: adaptive stratified sampling with dynamic weights (SOWC-1) and with fixed weights
(SOWC-2) over 20 macro-replications with mean and 95% CI convergence curves for WFa.
Fig. 11. Comparison of the optimal solution over 20 macro-replications for WFa shows while over-performing SOWC-TR and barely different from SOWC-2, SOWC-1 achieves a
smaller variance.
d
(

Table 4
Comparison of MSE and estimated WDC for different methods for WFb. The second
column summarizes the estimated WDC and the third column summarizes the overall
MSE (the value in the parenthesis is the standard error from 20 macro-replications).

Algorithm WDC (𝜃) MSE (×10−3)

Ref. [17] 0.075 14.276 (0.109)
SOWC-1 0.122 (0.056) 14.123 (0.119)
SOWC-2 0.143 (0.076) 14.140 (0.119)

Even though the recommended values of WDC for SOWC-1 and SOWC-
2 are different, their MSEs are rather comparable. The MSE with the
recommended 𝜃 = 0.075 is slightly higher than the MSEs derived from
the calibrated values. Despite the limited availability of data for WFb,
the proposed calibration approaches exhibit improved performance.

Figs. 12(a) and 12(b) show the distributions of MSE and WDC across
20 macro-replication for SOWC-1 and SOWC-2, respectively. While
MSEs from SOWC-1 and SOWC-2 are comparable, the interquartile
range for SOWC-1 is smaller, suggesting more certainty, compared to
SOWC-2.
5.2.2. Functional calibration
Some studies suggest that the value of the WDC depends on the local

atmospheric conditions and thus, a constant value of WDC does not
take into account these variations [24,39]. Taking local atmospheric
conditions into consideration, in this section, we model the WDC as a
linear function of TI in (3) for WFa. The dependence of WDC on TI
varies according to the atmospheric stability conditions. There are dif-
ferent ways to determine the atmospheric stability conditions. Obukhov
Length [53] is typically used to categorize atmospheric stability. How-
ever, with the data available, we do not have enough information to
determine the Obukhov Length.

Another way to determine atmospheric stability is via the wind
profile power law, which states that if wind speed 𝑢𝑟 at a reference
height 𝑧𝑟 is known, then wind speed 𝑢 at some height 𝑧 can be
etermined as
𝑢
𝑢𝑟

)

=
(

𝑧
𝑧𝑟

)𝛼
, (15)

where 𝛼 is the wake shear coefficient [54,55]. The value of the wake
shear coefficient can be used to determine near-neutral atmospheric
conditions. The value of 𝛼 varies with the terrain, and for lake or
ocean surface, it is assumed to be 0.1 [56] but for wind power offshore
operations, other values of 𝛼 have been used [57]. Since we cannot
determine the exact value of the wake shear coefficient at the studied
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Fig. 12. Results from 20 macro-replications for WFb: While MSEs from SOWC-1 and SOWC-2 are comparable, SOWC-1 produces more consistent WDC calibration results with less
variation.
Table 5
Comparison of MSE and estimated WDC for 0.05 < 𝛼 < 0.1 for WFa (the value in the parenthesis is the standard error from 20 macro-
replications).

Performance Intercept (𝑝) Slope (𝑞) MSE (×10−3)

Algorithm Overall 2nd row 3rd row 4th row

Ref. [39] 0.000 0.500 12.365 (0.182) 11.817 (0.174) 12.653 (0.183) 12.739 (0.211)
SOWC-1 0.068 (0.065) 0.033 (0.069) 12.379 (0.190) 11.569 (0.172) 12.747 (0.198) 12.999 (0.222)
SOWC-2 0.079 (0.105) 0.026 (0.035) 12.430 (0.190) 11.588 (0.172) 12.807 (0.198) 13.082 (0.222)
Table 6
Comparison of MSE and estimated WDC for 0.1 < 𝛼 < 0.15 for WFa (the value in the parenthesis is the standard error from 20 macro-
replications).

Performance Intercept (𝑝) Slope (𝑞) MSE (×10−3)

Algorithm Overall 2nd row 3rd row 4th row

Ref. [39] 0.000 0.500 12.406 (0.225) 11.270 (0.224) 12.578 (0.253) 13.671 (0.229)
SOWC-1 0.059 (0.035) 0.114 (0.056) 9.957 (0.241) 9.039 (0.235) 10.221 (0.254) 10.836 (0.256)
SOWC-2 0.059 (0.023) 0.098 (0.051) 9.952 (0.241) 9.039 (0.235) 10.212 (0.254) 10.829 (0.256)
𝛼
2
T
M
t
o
𝜃

wind farm location due to the limited information available to us, we
use wind speeds measured at two different heights, one below and the
other at the hub height, to determine 𝛼 in (15) in each data record.
Then, with the goal of finding the parameters 𝑝 and 𝑞 in (3) under
near-neutral conditions, we choose a subset of the dataset that exhibits
the near-neutral conditions using the resulting wake shear coefficient
values. Specifically, we divide the data into two sets for different ranges
of 𝛼; the first set comprises of lower 𝛼 values between 0.05 and 0.1, and
he second set has 𝛼 between 0.1 and 0.15. The size of the two sets is
034 and 1174, respectively.

In literature, the WDC is often assumed to be directly proportional
o TI (𝜃 = 𝑐 × TI) [23,38,39]. This is done because it is easier
o estimate a single parameter. Calibrating two parameters increases
he dimensionality of the problem making it more complex to solve.
owever, with the robustness and the efficiency that the our methods
ffer, the two-dimensional problem can be solved with relative ease.

We perform stochastic optimization on both sets to determine the
ptimal values of the intercept (𝑝) and the slope (𝑞). The setup is almost
he same as the point calibration setup, the only difference being that
ow we have a two-dimensional problem. Alblas et al. [39] suggested
relation between the WDC and TI, 𝜃 ≈ 0.5 × TI, for offshore wind

arms under neutral conditions. We use this as a reference to compare
he results of our optimization which are summarized in Tables 5 and
. The second column in the table reports the estimated intercept, and
he third column summarizes the estimated slope. The fourth column
ontains the values of MSE obtained from 20 validation sets for the
ntire wind farm. The last three columns contain the values of MSE for

he turbines in the second, third, and fourth rows respectively.
Table 5 shows the results for the first data set having lower values of
. The optimal functional relations obtained from SOWC-1 and SOWC-
are 𝜃 = 0.068 + 0.033 × TI and 𝜃 = 0.079 + 0.026 × TI, respectively.

he MSE values from SOWC-1 and SOWC-2 are almost equal to the
SE value if we use the relation suggested in [39]. The results for

he second set are summarized in Table 6. For the second set, the
ptimal functional relations suggested by SOWC-1 and SOWC-2 are
= 0.059 + 0.114 × TI and 𝜃 = 0.059 + 0.098 × TI, respectively. The

MSE reductions in SOWC-1 and SOWC-2 are more clear for larger 𝛼. In
particular, similar to what we observed for point calibration, we obtain
the substantial MSE reduction for turbines in the second row; for larger
𝛼, the MSE reduction is almost 19.01%, whereas it is approximately
1.72% for smaller 𝛼.

Fig. 13 plots the three functional relations for two different 𝛼 ranges.
The WDC values suggested by SOWC-1 and SOWC-2 increase steadily
with TI. Even for lower values of TI, the suggested functional relations
give a respectable value. On the other hand, the WDC value estimated
using the relation suggested in [39] is very low for lower TI values and
then gets close to the values suggested by SOWC-1 and SOWC-2 for
higher TI values.

The lower MSE achieved using stochastic optimization indicates that
using the relation of 𝜃 ≈ 0.5 × TI is not optimal for this studied wind
farm. Further the slope and intercept values obtained for the two sets
are slightly different. This implies that the values of slope and intercept
may need to be calibrated separately depending on 𝛼. An interesting
thing to note is that the optimization algorithms always give a non-zero
value for intercept. This suggests that direct proportionality between

the WDC and TI cannot always be assumed.
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Fig. 13. Comparison of the optimal functional relations between WDC and TI and the relation suggested by Alblas et al. [39] for the two subsets for WFa.
5.3. Extension to other wake models

Jensen’s model was among the first engineering wake models. Re-
cent literature contains several improvements to Jensen’s model. We
implement the proposed calibration methodology to a more sophisti-
cated wake model that integrates the lifting line and power yaw models
assuming a Gaussian wake [25]. This integrated model also uses a
secondary steering model that takes into account non-zero lateral wind
speeds downstream of yawed turbines.

We apply our methodology to calibrate the wake parameters (𝑘𝑤, 𝜎0)
of this Gaussian model for a simple two-turbine setting. We assume
that the parameters for both turbines are the same. The layout of the
two turbines is available in Figure 8.6 of [58] (see Pair 1 therein).
These turbines are a part of the larger wind farm, but there are no
turbines within ten times the rotor diameter distance of this pair. To
calibrate the model parameters, we use the operational data from this
pair of turbines, including wind speeds and power being recorded at
each turbine and the wind direction measured at the met mast [58].
The dataset does not include the yaw angle information, and we assume
zero yaw angle. More information about the wind farm can be found
in Section 8.6 of the ‘‘Data Science for Wind Energy’’ book [58], and
the dataset can be accessed online at [59].

The bearing angle between the two turbines is 307.1◦. Thus we have
filtered the data to include wind directions between [122.8◦, 131.4◦] and
302.8◦, 311.4◦], where the wake phenomenon is expected to be most
rominent. The size of this filtered data is 1804. Though the power
urve should be estimated using the free stream wind speed at the
et mast, due to the unavailability of these wind speeds in the dataset

vailable to us, we have used the wind speed at the upstream turbine
o determine the power curve using B-splines [52], where the wind
irection determines the upstream turbine. First, we stratify the data
nto two subsets based on the wind direction ranges. Then wind speed
s used to further stratify the data in each of these intervals of wind
irection using CART.

Fig. 14 depicts the trajectories of MSE of the proposed stratified
ampling-based methods, SOWC-1 and SOWC-2, as well as those of
he original TR method without stratification, SOWC-TR. All of the
hree methods converge well with sufficient computational resources,
.g., when the computational budget allows up to 5000 evaluations,
s shown in Fig. 14(b). However, the stratified sampling-based meth-
ds exhibit faster convergence given limited computational resources,
.g., when the allowed budget is only up to 2000 evaluation, as shown
n Fig. 14(a). Here, each evaluation implies each call of the Gaussian
ake model with one data record. This faster convergence is essential

n calibrating parameters in real use cases because actual wind farm

izes are significantly greater and data quantities are typically larger.
Table 7
Averages of calibrated wake parameters and MSE for the Gaussian wake model in
the studied wind farm from 20 macro-replications (the value in the parenthesis is the
standard error).

Budget Algorithm 𝑘𝑤 𝜎0 MSE

5000 SOWC-1 0.172 (0.009) 0.314 (0.007) 163.767 (1.931)
SOWC-2 0.186 (0.008) 0.333 (0.007) 164.148 (1.971)

2000 SOWC-1 0.178 (0.008) 0.318 (0.005) 163.906 (2.165)
SOWC-2 0.180 (0.011) 0.328 (0.011) 165.121 (1.811)

This result is consistent with the finding that the non-stratified SOWC-
TR requires a much larger computational budget for calibration when
calibrating the Jensen’s model parameter, as illustrated in Fig. 10.

The outcomes of 20 macro-replications are summarized in Table 7.
There is a small difference between the calibrated parameter values
from SOWC-1 and SOWC-2. This is because the MSEs are similar around
the final converged values of 𝑘𝑤 = 1.80 and 𝜎0 = 0.32 (notice that
the MSE of each technique is within ± 1 standard error of another
approach).

6. Concluding remarks

Accurate estimation of the WDC is of significant importance for the
performance of the Jensen wake model. This work shows the applica-
bility of data-driven stochastic optimization for wake calibration. We
use novel stochastic optimization methods to get reliable estimates for
the WDC. The robustness of the TR-based method is further improved
by applying variance reduction techniques like stratified sampling. De-
cision trees are used to split similar data into multiple bins efficiently.
Adaptive sampling is used in conjunction with stratified sampling to
determine the optimal sample size from each stratum during optimiza-
tion. With effective adaptive and stratified sampling, we pick the right
sets of data points to estimate the loss function, leading to coherent
computational budget usage. We present two algorithms: SOWC-1 uses
dynamic weights that are calculated using the local loss function, which
changes according to the search trajectory. SOWC-2 uses fixed weights
using the variance of the original data, assuming that the variance of
original data is positively correlated to the variance of the loss function.
These proposed methods outperform the widely used SG methods.

We demonstrate a unique method that can be used to determine the
wind farm-specific optimal parameter values of the Jensen model. We
extend the proposed methodology to solve two-dimensional functional
calibration problems. Using large datasets, one can efficiently use the
new point and functional calibration approach. To illustrate that our
approach can be easily applied to other advanced wake models, we
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Fig. 14. Comparison of MSEs between SOWC-TR and the proposed SOWC-1 and SOWC-2 for calibrating the Gaussian wake model [25] with different computational budgets.
R
mplement it with the Gaussian wake model. Overall we show that the
roposed strategy can result in efficient and robust calibration in engi-
eering wake models and can be extended to other wake models [18,
9,21,25].

The proposed approach enables an understanding to power deficit
atterns in existing wind farms, which can help design new wind
arms optimally. Moreover, with use of wind profile power law for
unctional calibration, we show calculation of the wake shear co-
fficient and determine the points recorded when the atmospheric
tability is near-neutral. In the future research, more information about
he data will be explored to determine atmospheric stability. Our
ther future research direction is to implement dynamic stratification
herein the partitioning changes according to the search trajectory.
uture research directions also involve calibrating wake parameters for
ndividual turbines using collaborative learning approaches [60] and
nvestigating how the wake effects influence the turbine reliability in a
ind farm [25,61].
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