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Introduction : : : Adaptive Sampling and Budget Allocation
We develop an Inexpensive bias . —— .

Simulation Optimization (SO) is /R V7 & 'lLs . Bias estimation with high precision is expensive!

an effective tool for solving data- _gg;_f;;_l; correction method that reduces

driven provlems.  _ _ _ _ _ 1 bias error to 0 (1/n3) while reducing
varilance by a constant factor,
incorporate it into SO for

robustness, and couple it with

adaptive sampling to enhance its

efficiency.
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We focus on feature selection (FS) as an instance of : ( ) o) ( v ' ' ) | Which input model and design should receive extra budget?
machine learning (ML) optimization: . o/m o(/m) o/R) |
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Genetic Algorithms provide a flexible framework for data- I_e_ccm litional bias corrected estimator becomes: MSE of all features on a holdout set
driven stochastic zero-one OptimizatiOn. | ébC(x’ F') — I e X-axis: total spent budget
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/0/ i i N It’s fast: number of required inner bootstraps = 1, v Bias correction makesa |t
e | e, v' Has reduced variance: Var(§%“(x, F)) = Var(8'8 (x, F)) / c. significant difference!
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