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Simulation Optimization (SO) is 
an effective tool for solving data-
driven problems. 

Bias Estimation

Introduction

Genetic Algorithms 

Numerical Results and Conclusion

We develop an inexpensive bias 
correction method that reduces 
bias error to 𝒪(1/𝑛!) while reducing 
variance by a constant factor, 
incorporate it into SO for 
robustness, and couple it with 
adaptive sampling to enhance its 
efficiency.

Problem Statement:
min
!
𝜃 𝑥, 𝐹 = Ε[𝑌(𝑥, 𝐹)]

We focus on feature selection (FS) as an instance of 
machine learning (ML) optimization:

Input Model 
Uncertainty

Monte Carlo 
Uncertainty

!𝜃 𝑥, %𝐹 − 𝜃 𝑥, 𝐹 ≈ Ν 𝑩𝒊𝒂𝒔, 𝐼𝑈	𝑉𝑎𝑟. +𝑀𝐶	𝑉𝑎𝑟.
𝒪 1/𝑛 𝒪 1/𝑛 𝒪 1/𝑅

We can write:

!𝜃!" 𝑥, %𝐹 = Ε !𝜃 𝑥, %𝐹∗ − 𝑏𝑖𝑎𝑠 %𝐹∗ %𝐹∗

	 ≈ 2 !𝜃 𝑥, %𝐹 − 2 !𝜃 𝑥, %𝐹∗∗ + !𝜃 𝑥, %𝐹∗∗∗

The conditional bias corrected estimator becomes:

Bias estimation with high precision is expensive!  

Genetic Algorithms provide a flexible framework for data-
driven stochastic zero-one optimization.

• Y-axis: MSE of selected subset of features divided by 
MSE of all features on a holdout set

• X-axis: total spent budget 

Increase the computation budget only if:
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Expectation over training and 
test sets help robustness

• Ranking & Selection (R&S)

Accounting for IU 
with conditioning on 

input + bias 
correction for each 

input model

ü Derived from iterative bootstrapping, 

ü It’s fast: number of required inner bootstraps = 1,

ü Has reduced variance: Var( /𝜃"# 𝑥, /𝐹 ) = Var( /𝜃$% 𝑥, /𝐹 ) / 𝑐.

ü Theorem: asymptotic CI convergence

/𝜃 𝑥∗, /𝐹
1
𝑚∑'()* /𝜃(𝑥' , /𝐹)

− 1 ≤ 𝛼× 9𝜎+,+.Optimality 
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Which input model and design should receive extra budget?

We compare three methods:
GA Robust GA Adaptive RGA

ü Fixed total computation 
budget 

ü Bias correction makes a 
significant difference!

ü Adaptive bias correction 
improves the chance of 
finding 𝑥∗

lim
$→&

Ρ 𝜃 𝑥, 𝐹 ∈ !𝜃!" 𝑥, %𝐹 ± 𝜏'/)∗ 𝑛 = 1 − 𝛼/2
Bootstrap quintile

ü Robust Optimal Computing Budget Allocation (R-OCBA)


