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The performance of a simulation-optimization algorithm, a.k.a. a solver, depends on its parameter settings. Much of the research to
date has focused on how a solver’s parameters affect its convergence and other asymptotic behavior. While these results are important
for providing a theoretical understanding of a solver, they can be of limited utility to a user who must set up and run the solver
on a particular problem. When running a solver in practice, good finite-time performance is paramount. In this paper, we explore
the relationship between a solver’s parameter settings and its finite-time performance by adopting a data farming approach. The
approach involves conducting and analyzing the outputs of a designed experiment wherein the factors are the solver’s parameters and
the responses are assorted performance metrics measuring the solver’s speed and solution quality over time. We demonstrate this
approach with a study of the ASTRO-DF solver when solving a stochastic activity network problem and an inventory control problem.
Through these examples, we show that how some of the solver’s parameters are set greatly affects its ability to achieve rapid, reliable
progress and gain insights into the solver’s inner workings. We discuss the implications of using this framework for tuning solver
parameters, as well as for addressing related questions of interest to solver specialists and generalists.
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1 INTRODUCTION

Many stochastic-optimization algorithms (a.k.a. solvers) have a multitude of settings that influence how they operate,
and in turn, how rapidly and reliably they make progress. For example, a basic version of the well-known stochastic
gradient descent (SGD) algorithm may have several user-specified settings, such as the step size, the sample size, and
the type of projection operator [20]. A more sophisticated version may allow users to choose a line-search routine
[19] or parameters for shifting and scaling the underlying problem [3]. We refer to such user-specified settings or
parameters as solver factors, which may be real-valued, integer-ordered, or categorical.
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In our opinion, the question of how a user should set solver factors to achieve good finite-time performance has not
received as much attention as it deserves. The consideration it has received often concerns the solver’s asymptotic
performance, e.g., local or global convergence and associated rates, accompanied by supporting theoretical results.
For the SGD algorithm, for instance, having the sequence of step sizes shrink to zero sufficiently slowly can help to
ensure convergence to a local optimal solution. These results are of theoretical value, but they do not always translate
to practical recommendations for everyday users. In particular, tuning parameters based on a problem’s properties,
e.g., its Lipschitz constant, dimension, or signal-to-noise ratio, remains a challenge. Moreover, factor settings that lead
to desirable asymptotic performance do not necessarily yield good finite-time performance. In practice, where a user
is likely to run a solver only once on their problem of interest, good finite-time performance—namely, the ability to
quickly and consistently find better solutions—is paramount. In research, identifying the most influential factors for
achieving good performance for all problems (if possible), or for specific classes of problems (e.g., those with convex or
nonsmooth objective functions, or those of low or high dimension), can pave the way for a new generation of robust
and reliable solvers.

Past research on setting solver factors has predominantly focused on search techniques for tuning hyperparameters
of machine-learning algorithms. Unlike in the simulation-optimization context we consider in this paper, these algo-
rithms typically do not encounter any randomness in the objective function evaluations [31, 32] and therefore do not
exhibit variable performance from run to run. These techniques include, but are not limited to: Bayesian optimization
algorithms [1, 16], which are limited by their dependence on certain assumptions and computational cost when the
space of hyperparameters grows; successive halving and bandit methods [13], which are limited by their sensitivity to
random sampling; and combinations of the two [9], which can be limited by early stopping and the aforementioned
scalability challenges of Bayesian optimization. Random search [2] and evolutionary algorithms [18] are also often used
for this purpose, but have limitations in computation, parametric sensitivities, and a lack of convergence guarantees.

When algorithms for hyperparameter tuning are not employed, experimentation with solver factors is often ad hoc.
In the extreme case, experiments are run with solver factors set to what appear to readers to be arbitrary values. These
values may be those that produced the best empirical performance on the set of test problems, perhaps chosen to make
a newly proposed solver look good relative to its competitors. Even when experiments have been run with a variety of
factor settings, it can be difficult to extract practical guidance on how to set factors for a new problem. This issue is
compounded by the reality that a solver’s “out-of-the-box” settings in software implementations may not be good for
all problems. Moreover, these default settings may not even be the product of extensive experimentation.

We seek to address the limited understanding users and developers may have about how a solver’s factors affect
its behavior and finite-time performance. We approach the problem from a data-farming perspective wherein solver
factors are systematically varied according to a design of experiments (DOE). Our proposed approach entails running
extensive experiments with different versions of a solver on a given problem or a small class of problems. Our use of
DOE differs from past research on data farming, which generally concerns varying parameters of a simulation model to
understand how changes to its inputs affect its performance measures. We instead vary parameters of the solver, and
our response functions are performance metrics for simulation-optimization algorithms, such as the time at which the
solver attains some specified improvement in the objective. Our approach can be extended to a range of algorithms that
touch upon many domains. For example, algorithms for surrogate optimization, derivative-free optimization, stochastic
programming, and Bayesian optimization can all exhibit variable run-to-run performance and could benefit from more
informed setting of solver factors.
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To the best of our knowledge, DOE and data farming have not been applied in the context of studying solver
performance, but we demonstrate that they can be powerful methods for gaining a deeper understanding of a solver. The
advantage of DOE for experimenting with solver factors is that it can provide more than just an optimal configuration.
Specifically, it can provide insights into the trade-offs, risks, and sensitivities of a solver’s inner workings, which can lead
to advances in simulation-optimization methodology. Whereas an end user might use this approach to find parameter
settings delivering the best performance on a given problem, developers of new solvers might use it to systematically
assess solver performance and prescribe robust parameter settings (or rules of thumb) for practitioners.

The rest of this paper is organized as follows. In Section 2, we introduce the canonical simulation-optimization
problem and a set of metrics for evaluating a solver’s finite-time performance. We then set up a data-farming framework
for studying solver performance in Section 3. In Section 4, we present a list of “Top Ten” questions and associated
statistical techniques that can guide an analysis of the experimental results. In Section 5, we apply these techniques to
study the ASTRO-DF algorithm and demonstrate that how the solver’s factors are set matters, in a measurable way. We
conclude in Section 6 with a discussion of extensions to the data-farming framework and its implementation in the
SimOpt testbed [8].

2 SIMULATION OPTIMIZATION AND SOLVER PERFORMANCE METRICS

A simulation-optimization (SO) problem is an optimization problem where the objective function and/or constraints are
evaluated (with noise) through a stochastic simulation. A wide variety of problems can be formulated as SO problems.
We consider the prototypical SO problem

min
𝑥

𝑓 (𝑥) ≡ E𝑓 (𝑥, b) subject to 𝑥 ∈ D, (1)

where 𝑥 is a vector of decision variables that lies in a domain D. We consider the setting in which D is either
unconstrained, i.e., D solely restricts components of 𝑥 to be integer-valued or continuous, or is described by only
deterministic constraints; we do not consider stochastically constrained domains in this paper. The term b represents
the collection of random variables generated by a simulation model in the course of simulating a single replication.
The distribution of b is allowed to depend on 𝑥 , thus the expectation in Problem (1) is over realizations of b for a given
𝑥 . The function 𝑓 (𝑥, ·) denotes the logic used to obtain an estimate of the objective function 𝑓 (𝑥) for a given feasible
solution 𝑥 .

2.1 Measuring Solver Performance

An SO solver attempts to solve Problem (1) by estimating the objective function values of different feasible solutions. For
example, at a given solution 𝑥 , a solver may take 𝑛𝑥 simulation replications and estimate 𝑓 (𝑥) by the sample average of
the outputs 𝑓 (𝑥, b1), 𝑓 (𝑥, b2), . . . , 𝑓 (𝑥, b𝑛𝑥 ). Depending on the problem and available computational resources, it may
be impossible to evaluate all solutions in D; instead the solver may evaluate only a subset of feasible solutions. A
solver strives to quickly find feasible solutions with near-optimal objective function values. Although SO algorithms
are diverse, some efforts have been made to develop widely applicable metrics for evaluating their performance. We
adopt and adapt many of the metrics introduced in [6] and provide only a summary description here to convey the
essential ideas.

When running a particular SO solver on a given problem, we fix a budget𝑇—measured in simulation replications—and
observe the sequence of solutions recommended by the solver as it expends the budget. This sequence of recommended
solutions can be conveniently viewed as a continuous-time stochastic process {𝑋 (𝑡) : 0 ≤ 𝑡 ≤ 1} where 𝑋 (𝑡) is the
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solution recommended when a fraction 𝑡 of the budget 𝑇 has been expended. The objective function values of these
solutions also form a stochastic process {𝑓 (𝑋 (𝑡)) : 0 ≤ 𝑡 ≤ 1}. Plotting 𝑓 (𝑋 (𝑡)), or an estimate thereof, as a function
of 𝑡 is common in the optimization literature. To produce metrics that are independent of the scaling of the objective
values and of the direction of optimization (minimization vs maximization), one can standardize 𝑓 (𝑋 (𝑡)) using the
objective function values of some (typically poor) initial solution 𝑥0 and a reference optimal solution 𝑥∗. To be more
precise, consider

a (𝑡) = 𝑓 (𝑋 (𝑡)) − 𝑓 (𝑥∗)
𝑓 (𝑥0) − 𝑓 (𝑥∗) ,

which represents the relative optimality gap of the solution recommended at 𝑡 , relative to the initial optimality gap. A
realization of the stochastic process {a (𝑡) : 0 ≤ 𝑡 ≤ 1} is called a progress curve of the solver. A plot of a (𝑡) as a function
of 𝑡 shows a piecewise-constant function that is typically, though not necessarily, nonincreasing. Because the objective
function 𝑓 cannot be evaluated exactly for SO problems, one would more commonly work with an estimated progress
curve obtained by estimating the objective 𝑓 using replications of the simulation model at 𝑥0, 𝑥∗, and 𝑋 (𝑡). Using the
outputs of the replications taken by the solver when visiting a solution 𝑋 (𝑡) is known to produce an optimization
bias [14]. Thus, it is advisable to take fresh independent replications (referred to as postreplications) in a post-processing
stage. The choices for the number of postreplications for each 𝑋 (𝑡) and the number of postreplications for the reference
solutions 𝑥0 and 𝑥∗ are user-specified and could be chosen to be relatively large to avoid incorrectly ordering solutions
by chance. See Section 8 of [6] for a detailed discussion and a theoretical investigation of these choices.

A progress curve contains a great deal of information about the performance of a solver on a single run. For example,
Figure 1a shows progress curves for three different runs of a fictitious solver. In Run 1, the solver takes a long time
to begin improving on its initial solution, but finds the optimal solution after 80% of the budget has been consumed.
By contrast, the curve for Run 2 shows the solver making great progress initially, followed by a long period where no
progress is achieved before gradually reducing the optimality gap. In Run 3, the relative optimality gap drops fairly
early (though not as soon as in Run 2), but the solver later has a more difficult time improving on its solution.
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(a) Progress curves for three runs. Dashed lines indicate thresholds
of 0.05, 0.5, 0.2, and 0.1 for the relative optimality gap.

Solver metric Run 1 Run 2 Run 3
Final relative optimality gap
a (1) 0.00 0.05 0.31

Area under progress curve
𝐴 0.69 0.43 0.21

Time 𝜏 at which curve drops
below threshold
𝜏 (0.5) 0.80 0.05 0.15
𝜏 (0.2) 0.80 n/a 0.23
𝜏 (0.1) 0.80 n/a 0.30
𝜏 (0.05) 0.80 n/a 0.85

Curve drops below threshold
𝑦 (0.5) 1 1 1
𝑦 (0.2) 1 0 1
𝑦 (0.1) 1 0 1
𝑦 (0.05) 1 0 1

(b) Solver performance metrics for the three runs. The
bests of each measure are indicated in bold.

Fig. 1. Progress curves and performance metrics for three runs of a solver.
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We will find it helpful to summarize the information contained in a progress curve with a few scalar metrics, which
can then be treated as responses within our data-farming framework. We highlight four functionals of the progress
curve that describe important aspects of a solver’s performance:

• The final relative optimality gap, a (1), indicates what fraction of the initial optimality gap is remaining after the
solver has exhausted its budget.

• The area under the progress curve, 𝐴 =
∫ 1
0 a (𝑡) 𝑑𝑡 , is the time-average relative optimality gap associated with the

solutions recommended by the solver over time.
• The 𝛼-solve time, or time at which the relative optimality gap first drops below some threshold 𝛼 ∈ [0, 1],
𝜏 (𝛼) = inf{𝑡 ∈ [0, 1] : a (𝑡) ≤ 𝛼}, measures the speed with which the solver achieves a specified degree of
improvement.

• The 𝛼-solvability, or whether or not the relative optimality gap drops below some threshold 𝛼 ∈ [0, 1] before
termination, 𝑦 (𝛼) = I{𝜏 (𝛼) ≤ 1}, measures the ability of the solver to find a near-optimal solution given its
budget.

Figure 1b displays the solver performance metrics associated with the three progress curves from Figure 1a. Each of the
runs is associated with the best performance in at least one metric, but none of the runs dominate in all.

The behavior of an SO solver varies from run to run due to random error when estimating the objective function and
(optional) intrinsic randomness, e.g., picking a random search direction. It is therefore imperative to conduct multiple
runs, hereafter referred to as macroreplications, of a solver on a problem to understand its variable performance. In
light of this variability, the scalar metrics listed above can be regarded as random variables, and properties of their
distribution, e.g, their mean, median, variance (when finite), high-probability quantiles or VaR (Value at Risk), and
CVaR (Conditional Value at Risk) [12] serve as useful summary statistics.

2.2 Solver Factors

SO solvers typically feature many parameters that affect how the solver evaluates solutions and seeks better ones. In a
nod to the conventional terminology used in DOE, we call such parameters solver factors. Solver factors come in many
forms and can control a myriad of aspects of solver behavior. For example, solver factors can relate to an exploration-
exploitation tradeoff within an algorithm, such as the choice of the population size in a genetic algorithm, the step
length in a gradient-descent algorithm, or the criteria for choosing a model-minimizing point within a trust-region
algorithm. As illustrated in these examples, solver factors can be integer-ordered, real-valued, or categorical. These
factors influence not only the solver’s behavior, but also the solver’s average and variable performance from run to run,
i.e., its ability to consistently find high-quality solutions.

As a practical remark, to carry out the experiments we discuss in the next section, solvers should be coded in a way
that allows their parameters to be varied externally. In this way, an experiment involving multiple versions of the same
solver can be run without needing to manually change hard-coded values. Many code implementations of SO solvers
are not structured in this way, since only one version of the solver is typically run when solving a problem in practice.
One exception is the SimOpt library [8], an open-source testbed of SO problems and solvers, wherein solvers are coded
to support flexible experimentation where any and all solver factors may be altered. The solver performance metrics
discussed in Section 2.1 and the data-farming framework we are about to introduce have been implemented in a recent
redesign of SimOpt, described in [7], and users can reproduce the experiments in this paper or run their own on the
library’s collection of problems and solvers.
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For Solver 𝑠 , we let 𝑠 (𝑣) denote a version of the solver corresponding to its factors being set as 𝑣 . As previously
mentioned, 𝑣 may represent a combination of numerical and non-numerical factors. We wish to understand how
performance metrics of Solver 𝑠 , particularly those listed in Section 2.1, change as the combined factor settings, 𝑣 ,
change. To study this question, we introduce a data-farming framework that involves testing multiple versions of the
solver and analyzing the results.

3 EXPERIMENT DESIGN

Studies of new SO algorithms commonly feature experiments that test only a handful of versions of a solver, with these
often coming from varying one or two solver factors. Ad hoc comparisons like this allow only limited conclusions
to be drawn about the impact of solver factor settings on solver performance. Varying individual factors one at a
time while holding the others fixed offers insight into only the marginal effects of each factor, which may be of little
informational value because it precludes the identification and estimation of interaction effects and makes it impossible
to fit metamodels that capture solver behaviors in the interior of the factor space. Moreover, full-factorial designs,
wherein all combinations of setting solver factors at a finite number of levels are evaluated, can be too expensive to run,
even for modest numbers of factors and levels.

Design of experiments (DOE) affords a more systematic comparison of the performances of different versions of a
solver with a more efficient (i.e., smaller) design. For concreteness, consider a set of 𝑟 versions of Solver 𝑠 , denoted by
S = {𝑠 (𝑣1), 𝑠 (𝑣2), . . . , 𝑠 (𝑣𝑟 )} where the versions differ only in the settings of the 𝑘 solver factors under investigation. In
the DOE terminology, the setV = {𝑣1, 𝑣2, . . . , 𝑣𝑟 } is called the design, and each combination of factor settings, 𝑣 𝑗 for
𝑗 = 1, 2, . . . , 𝑟 , is called a design point. The designV should possess certain properties suited to the user’s needs, such as
filling the space of factors or allowing for the study of interactions among factors. There are many good designs, but
some are more suitable for physical experiments or deterministic computer experiments than for stochastic simulation
experiments. A few designs we recommend for tuning continuous-valued solver factors are nearly orthogonal Latin
hypercubes (NOLHs) [5], resolution V frequency based designs (R5FBDs) [22], or resolution V central composite
designs (R5CCDs) [24]. These all explore factors at multiple levels, and provide flexibility for fitting different types of
metamodels or using different visualization techniques during analysis. Orthogonality or near-orthogonality is desirable
for separately estimating the effects of different factors. The R5FBD and R5CCD are perfectly orthogonal and permit all
main effects, quadratic effects, and two-way interaction effects to be fit simultaneously. If some factors are discrete with
relatively few levels, or categorical factors, then nearly orthogonal-and-balanced (NOAB or NOB designs) [30] can be
used; here, “nearly balanced” refers to sampling each level of a discrete-valued or categorical factor approximately the
same number of times. The space-filling behavior for most of these designs can be improved by reassigning factors to
columns of the design matrix, a process called stacking. Finally, crossing two designsV1 (𝑘1 factors, 𝑟1 design points)
and V2 (𝑘2 factors, 𝑟2 design points) is a straightforward way to construct designs capable of exploring 𝑘1 + 𝑘2 factors
in 𝑟1 × 𝑟2 design points; these can be useful, even though they are not the most efficient. See [26] for more information
about DOE for simulation experiments, or see [21] to download design generator software.

DOE plays a central role in the area of data farming [23]. In data farming, a user studying a simulation model first
“grows” a data set by running the model with different combinations of inputs (i.e., factors of the model) according to a
design of experiments and then analyzes the results. Our application of data farming differs from the conventional
approach in that our responses of interest are not the performance indicators of the simulation model but rather metrics
of how well a solver solves a given SO problem, such as those mentioned in Section 2.1.
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Our experiment design entails running multiple macroreplications of each version of the solver (corresponding
to each design point) on a fixed SO problem. The same problem instance is solved at all design points, hence, the
progress curves and all associated metrics are standardized using the same reference solutions 𝑥0 and 𝑥∗. Specifically,
all macroreplications of all solver versions start at the same initial solution 𝑥0, and 𝑥∗ is taken to be the estimated best
solution recommended by any solver on any macroreplication. We perform a common number of macroreplications
at each design point, though the data-farming framework permits the sample sizes to vary across design points. For
instance, if the observed responses (solver performance metrics) at a given design point were highly variable, we may
want to take more macroreplications.

When taking a common number of macroreplications at all design points, common random numbers (CRN) can be
used across design points to sharpen the comparisons. In our setup, CRN would ideally mean that the different versions
of the solver would see the same sequences of objective function estimates if simulating the same solutions and would
all use the same sequence of random inputs for their internal purposes. The former of these is readily achieved if the
solver additionally using CRN across solutions. The experiments in this paper were conducted in SimOpt [8] and use
CRN in all these ways by default. Our intention in using CRN across design points is to better estimate the ordering of
performance metrics when comparing multiple versions of the solver.

4 MOTIVATING QUESTIONS FOR ANALYSIS

The experiment introduced in Section 3 produces a large amount of data, consisting of multiple solver performance
metrics tracked on each macroreplication of each solver version tested. It remains to transform this data into insights
via a purposeful analysis. In this section, we outline pertinent questions to the study of solver performance and the
statistical techniques best suited for answering them. The intent is to showcase the range of analyses that can be carried
out on the data produced by the experiment. In Section 5, we present an empirical study, going into much more depth
and discussion on the methods and potential insights.

Table 1 lists the “Top Ten” questions that have been proposed as guides to the analysis of data-farming experiments,
along with a partial summary of statistical tools and visualization techniques that can be used to answer these questions
[17]. These are not intended to be exhaustive, but are adapted from similar questions that have helped direct the analysis
for hundreds of data-farming experiments that investigate the relationships between simulation model factors and
simulation model responses for specific applications. Our “Top Ten” questions shift the focus to exploring the relationship
between solver factors and solver performance metrics.

Two types of researchers or analysts might benefit from such a study. First, those faced with the need to solve a
particular class of problems on a regular basis might seek to tune the solver’s factors in ways that are beneficial for that
class. For example, a retail warehouse might be faced with setting inventory policies for thousands of items where
the policies are revisited over time as demand patterns evolve, costs change, or new products are introduced. We will
refer to these users as solver specialists or simply specialists. Specialists would benefit from including problem-specific
factors (e.g., parameters of the demand distribution input models, holding costs, etc.) in their experiment, as well as
solver factors. Such a study could either determine that certain solver factor settings yield good solver performance
for a wide variety of potential futures, or provide guidance on how to select good solver factor settings based on the
problem’s characteristics. Either way, even small improvements in the quality and timeliness of the solutions may lead
to substantive reductions in the overall cost when the specialist is called on to solve thousands of problems.

Second, those interested in general solver performance could use such a study to assist in setting appropriate default
values for a particular solver’s factors during development, provide guidance to solver users about when and how they
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Table 1. “Top Ten” questions to ask during the analysis of results from a solver performance experiment.

Question Some techniques
1. What was the spread of solver performance

metrics over the entire experiment?


summary statistics, histograms, box plots2. What run-to-run variation (spread, shape, and
central tendency) was observed for the solver
performance metrics of interest? Did these
vary across design points?

3. Are there any outliers or solver factor config-
urations that lead to unusual behavior?

box plots, scatter plots, metamodel-specific diagnostics
(e.g., Cook’s distance for regression metamodels)

4. How are the solver performance metrics cor-
related? Do they involve trade-offs or behave
serendipitously?

correlation matrices, scatterplot matrices

5. Which solver factors are most influential? 
6. Are there any important interactions? stepwise regression, partition trees, other metamodels,
7. What are the interesting regions and threshold

values in the solver factor space?
interaction profiles, interactive graphs

8. Are any of the results counterintuitive? trace results to their causes as part of verification and
validation

9. Which configurations of solver factors are
most robust, leading to consistently good per-
formance for a solver metric of interest?

contour plots, metamodels of robustness as quantified
by loss functions over solver performance metrics, risk-
adjusted solver performance metrics

10. Are there any configurations that performwell
w.r.t. multiple solver performance metrics?

parallel plots, heatmaps, defining constraints, Pareto
optimal curves, weighted loss functions

might seek to improve on these default values, or perhaps choose to remove some as factors and re-specify them as
functions of other factors. We refer to these as solver generalists or simply generalists throughout the remainder of this
paper. Researchers developing or implementing new solvers can be thought of as generalists. Generalists may also be
interested in experimenting with a group of solvers across multiple problems to gain insight into which problems can
be characterized as “easy” or “hard” for those solvers; this kind of meta-experiment is beyond the scope of this paper,
but is a worthwhile direction for future research.

5 A STUDY OF ASTRO-DF

We demonstrate how to leverage data farming to investigate solver factors with an example consisting of one solver
and two problems, described in Sections 5.1 and 5.2, respectively. We set up an experiment in Section 5.3 and then delve
into the “Top Ten” questions in Section 5.4. Throughout these sections, we discuss situations where specialists and
generalists might pursue different lines of inquiry.

5.1 The ASTRO-DF Solver

ASTRO-DF [10, 11, 28], which stands for Adaptive Sampling Trust-Region Optimization for Derivative-Free problems,
is a class of algorithms that use local models fitted on function estimates of an incumbent solution and its neighbors to
converge to a stationary point. The neighborhood represents the region within which the local model is credible and its
size (specifically, its radius) governs the step size taken to determine the next iterate. ASTRO-DF is proven to converge
to a first-order critical point almost surely and reach 𝜖-optimality at the rate of Õ(𝜖−4) under certain assumptions,
Manuscript submitted to ACM
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irrespective of the setting of its factors. This example illustrates the finite-time performance of ASTRO-DF as a function
of some of its factors that determine how the trust region is updated; the relevant details of the ASTRO-DF solver are
described below.

On an iteration 𝑘 , ASTRO-DF maintains a trust region of radius Δ𝑘 centered at an incumbent solution 𝑋𝑘 , denoted
by 𝐵(𝑋𝑘 ;Δ𝑘 ) = {𝑥 ∈ D : ∥𝑥 − 𝑋𝑘 ∥ ≤ Δ𝑘 }. The algorithm estimates the objective function values at neighboring
solutions located on the boundary of 𝐵(𝑋𝑘 ;Δ𝑘 ) along the coordinate basis. The sample sizes for each neighboring
solution are determined by an adaptive sampling rule and are roughly Õ(Δ−4

𝑘
). This ensures that as the trust region

contracts, signifying closeness to a stationary point, the accuracy of the estimated objective function values sufficiently
increases. ASTRO-DF then fits a quadratic model on these estimated objective function values and performs a quality
certification. In the quality-certification step, if the norm of the gradient of the model at the incumbent solution is
too small relative to Δ𝑘 , the trust-region radius is reduced and a new quadratic model is constructed. The algorithm
then optimizes (minimizes) the certified local model within the trust region 𝐵(𝑋𝑘 ;Δ𝑘 ), and the resulting solution �̃�𝑘+1
serves as a candidate for the next incumbent. The success of the local model is assessed by estimating the objective
function at the candidate solution �̃�𝑘+1 and comparing the estimated improvement in moving from 𝑋𝑘 to �̃�𝑘+1 with the
improvement predicted by the model. The objective function estimate improvement divided by the model improvement
is called the success ratio 𝜌𝑘 , and ASTRO-DF accepts the candidate solution if 𝜌𝑘 ≥ [1 and rejects it otherwise. The
trust-region radius Δ𝑘 is updated before the start of the next iteration according to the following rule:

Δ𝑘+1 =


min{𝛾1Δ𝑘 ,Δmax} if 𝜌𝑘 ≥ [2 [very successful iteration – expand trust region],

Δ𝑘 , if 𝜌𝑘 ∈ [[1, [2) [successful iteration – keep trust region unchanged],

𝛾2Δ𝑘 , otherwise [unsuccessful iteration – contract trust region].

(2)

The trust-region radius, and how it changes throughout the search, affects the performance of ASTRO-DF in several
ways: it governs the local model construction and certification, and it controls the step size between consecutive
iterations. Four user-specified parameters appear in (2): 𝛾1, the rate of expansion of the trust region after a very
successful iteration; 𝛾2, the rate of contraction of the trust region after an unsuccessful iteration; and [1 and [2, the
thresholds defining successful and very successful iterations, respectively. We will vary these four factors in a design.

5.2 The Problems

We cannot investigate a solver’s behavior without observing its performance. So, we apply the ASTRO-DF algorithm to
two problems from the SimOpt library [8]: SSCONT, an (𝑠 , 𝑆) inventory problem with continuous demand and order
quantities, and SAN, a stochastic activity network problem with 9 nodes and 13 arcs. The former is a 2-dimensional
problem that is non-convex, whereas the latter is 13-dimensional and convex.

The SSCONT problem features a single product whose inventory level is dictated by an (𝑠 , 𝑆) inventory policy,
meaning that when the inventory level drops below 𝑠 , an order is placed so that the inventory level can be brought back
up to 𝑆 . The demand in each period is assumed to be exponentially distributed with a mean of 100 units, independent
across periods. The order lead time is assumed to be discrete and random, following a Poisson distribution with mean
of 6 periods, independent across periods. The objective is to find values of 𝑠 and 𝑆 that minimize the expected total cost
over 100 periods, which is the sum of total back-order cost ($4 per unit), total holding cost ($1 per unit per period), total
fixed cost ($36 per order), and total variable cost ($2 per unit) using a warm-up of 20 periods. The standard formulation
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of the problem requires that 𝑠 < 𝑆 , however, in SimOpt, we reparameterize the decision variables to be 𝑠 and 𝑆 − 𝑠 so
that the domain is the non-negative orthant D = IR+ × IR+. The optimal solution is unknown.

In the SAN problem, a network of nodes are connected with arcs representing activities in a project; the length of
each arc represents the duration of the activity and the direction of each arc reflects the precedence. The objective is to
specify parameters of the arc-length distributions to minimize a combination of the length of the longest path and an
associated cost. In particular, if \ = (\𝑖 , 𝑖 = 1, 2, . . . , 13) are the parameters of exponential distributions for arc lengths
and 𝑐 = (𝑐𝑖 , 𝑖 = 1, 2, . . . , 13) are the associated costs per unit time for arcs 1 to 13, then the objective function is of the
form E𝐿(\ ) + 𝑐 (\ ), where 𝐿(\ ) is the (random) length of the longest path from node a to node i, i.e., the duration of
the project, and 𝑐 (\ ) = ∑13

𝑖=1 𝑐𝑖/\𝑖 . For this instance of the problem, we let 𝑐𝑖 = 1 for 𝑖 = 1, 2, . . . , 13 and use the network
structure depicted in Figure 2. The optimal solution to this problem is also unknown.

Fig. 2. The stochastic activity network structure used in the experiment.

5.3 The Experiment

Now that we have specified our solver and some problems on which it will be applied, we can set up an experiment
to systematically study how the solver factors that control changes to the trust-region size—namely 𝛾1, 𝛾2, [1, and
[2—influence the performance of ASTRO-DF. For each of these factors, we specify a range of values over which we
will vary them in a design. For 𝛾1 in particular, the exploration range is chosen to be [1.0, 3.0] because increasing the
trust-region radius (which determines the step size) by more than a factor of 3 seems unreasonable. The other three
factors must be between 0 and 1, and additionally we must set [1 < [2. In all runs of all variations of the ASTRO-DF
solver, we fix the initial solution of SSCONT to be 𝑥0 = (600, 600) with total budget (the maximum number of function
evaluations) of 𝑇 = 1000 and the initial solution of SAN to be 𝑥0 = (8, 8, . . . , 8) with total budget of 𝑇 = 10,000.

Table 2. ASTRO-DF Solver Factors and Factor Ranges Used in the Experiment.

Factor Description Type Specification Range
𝛾1 expansion rate of Δ𝑘 after a very successful iteration continuous ∈ (1,∞) [1.0, 3.0]
𝛾2 contraction rate of Δ𝑘 after an unsuccessful iteration continuous ∈ (0, 1) [0.1, 0.9]
[1 threshold for a successful iteration continuous ∈ (0, 1) [0.1, 0.5]
[2 threshold for a very successful iteration continuous ∈ ([1, 1) [0.5, 0.9]

For efficiency, our chosen design over solver factors is a nearly orthogonal Latin hypercube (NOLH) design with 3
stacks for a total of 17 + 16 + 16 = 49 design points. This design was generated using the datafarming Ruby gem [21]
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with
stack_nolhs.rb –s 3 < astrodf_factor_setting.txt > astrodf_design.txt

run in the command line. In the command above, astrodf_factor_setting.txt is an input text file specifying the
range of settings of the four solver factors, as listed in Table 2, and astrodf_design.txt is an output text file (to be
created) listing all 49 design points. Each design point corresponds to a version of the ASTRO-DF solver with a specific
combination of values for the factors 𝛾1, 𝛾2, [1, and [2.

Many options are possible for the problem factor design. We opt for the simplest in this paper: a single categorical
factor that specifies the problem name, as shown in the first column of Table 3. In this table, we also list the default
settings that, while unchanged in our experiment, might be factors of interest in future experiments. For example, a
solver specialist might wish to vary the factors of the SSCONT problem to get a sense of how often it is feasible and
useful to re-optimize if costs or demand patterns change, or investigate how long the warm-up period and run lengths
should be to achieve satisfactory performance on key solver metrics. A solver generalist might be more interested in
exploring how the solver behaves on problems of different dimensions, e.g., by generating a wide variety of stochastic
activity networks with different structures and numbers of arcs, or by exploring a larger selection of problems from the
SimOpt testbed.

Table 3. Problem-Specific Potential Factors and Default Settings for Two Simple Problems.

Problem Factor Description Type Specification Default

SSCONT

demand distribution categorical exponential∗
mean demand per period continuous > 0 100
order lead time distribution categorical Poisson∗
mean order lead time, in periods continuous > 0 6
back-order cost per unit continuous > 0 4
holding cost per unit continuous > 0 1
fixed cost per order continuous > 0 36
variable cost per unit continuous > 0 2
warm-up before data collection, in periods integer ≥ 0 20
number of periods after warm-up in each run integer ≥ 1 100

SAN

distribution of activity time for arc 𝑖 categorical exponential∗
cost per unit time for arc 𝑖 continuous > 0 1
number of nodes integer ≥ 1 9
graph precedence structure categorical see Figure 2

∗Not currently farmable in SimOpt.

Our overall design is the result of crossing the two individual designs: one for the solver factors, the other for the
categorical “Problem” factor, for a total of 49 × 2 = 98 design points. For each design point, we ran 10 macroreplications
of the corresponding version of ASTRO-DF and set the numbers of postreplications as 200 for each recommended
solution. On each macroreplication of each design point, we recorded the following ten responses: the final relative
optimality gap a (1), the area under the progress curve 𝐴, and the 𝛼-solve times 𝜏 (𝛼) and 𝛼-solvabilities 𝑦 (𝛼) for
𝛼 = 0.05, 0.1, 0.2, and 0.5. The final relative optimality gaps and 𝛼-solvability responses reflect the goodness of the
solutions that ASTRO-DF can find given the budget. On the other hand, the area under the progress curves and 𝛼-solve
times reflect the speed at which the solver finds better solutions over time.

The data farming analysis requires the factors and responses to be consolidated into a single file so that we can
explore the input-output relationships. SimOpt facilitates this by automatically creating a comma-separated value
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(.csv) file suitable for analysis. Each of the 49 × 2 × 10 = 980 rows in this file provides the factor settings, response
measures, and any other constants, outputs, or diagnostics recorded for a single run; we call this the raw datafile. We
also create a summary datafile by aggregating across macroreplications at each design point, obtaining the mean and
standard deviation of each numeric-valued response and the probability of achieving each threshold of interest; the
summary-by-problem-and-solver-design-point datafile has 49 × 2 = 98 rows. When analyzing ASTRO-DF’s performance
on either SAN or SSCONT, we will use only the subset of the rows of the summary-by-problem-and-solver-design-point
corresponding to that problem. We can further summarize the data over the “Problem” factor to obtain a summary-by-

solver-design-point datafile with 49 rows each containing summary statistics for a single combination of solver factors.
Some of the graphs and statistical methods that follow use the raw datafile, others are based on one of the summary
datafiles.

5.4 Steps in Analysis

Our objective in this section is to provide examples of the types of analyses that might be of interest to a solver specialist
or generalist.

5.4.1 Question 1: What was the spread of solver performance metrics over the entire experiment? There are several
reasons for asking this question. From the raw datafile, we can determine whether or not all the metrics are available,
and whether the ranges of values are plausible. From the summary datafile, we can determine whether the ranges
of summary metrics across design points differ enough that we would be interested in fitting metamodels of the
response surfaces. For example, Figure 3 shows a series of histograms for the six numeric responses. Additionally, the
𝛼-solvabilities (not shown) are 𝑦 (0.05) = 0.365, 𝑦 (0.1) = 0.620, 𝑦 (0.2) = 0.837, and 𝑦 (0.5) = 0.965, respectively; the
rows for which the 𝛼-solve times are missing correspond to runs where the solver failed to 𝛼-solve the problem.
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Fig. 3. Histograms and boxplots for several quantitative ASTRO-DF solver performance metrics from the raw datafile. The numbers
of non-missing responses are also shown in parentheses. Note that the 𝜏 (𝛼) in 3c–3f are on the same scale.

The histograms for the final relative optimality gap and the area under the progress curve were, at first, surprising,
because we did not expect any normalized values to fall outside the range [0, 1]. After further discussion, we realized this
is indeed plausible. We leave a full discussion to Question 8, but remark here that solver generalists and specialists should
be aware of the possibility of some solver performance metrics falling outside the normalized limits. The distributions
of the 𝛼-solve times conform to our expectations that it becomes more difficult to solve problems as 𝛼 decreases. This is
revealed both by the increasing frequencies of runs that use high proportions of the available time, as well as decreasing
numbers of runs where the 𝜏 (𝛼) values were reported. Figures 3c–3f reveal that a greater preponderance of runs require
more of the available time to solve the problem as the 𝛼 threshold for optimality decreases.
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5.4.2 Question 2: What run-to-run variation (spread, shape, and central tendency) was observed for the solver performance

metrics of interest? Did these vary across design points? Answers to these questions may shape further analysis or lead to
additional experiments. The boxplots in Figure 4 show that the final optimality gap data for a specific design point tends
to be either relatively symmetric or positively skewed (towards high values). This is unsurprising since the unknown
absolute optimality gap is bounded below by zero. However, it is interesting to see how the distributions of a (1) differ
by problem: SSCONT is much harder to solve than SAN, which may be due to a small budget chosen for solving it and
the problem’s high degree of simulation error (variability) when evaluating solutions. The high variability in a (1) for
SSCONT is not necessarily a cause for concern. A generalist will be more interested in solver performance across a wide
range of problems than in predicting the actual solver performance for a specific problem, and there is no requirement
that the variabilities across problems be similar. If the generalist was concerned about the number of runs resulting in
a (1) > 1, they could choose to rerun the SSCONT experiments with a larger budget before conducting more detailed
analysis. Alternatively, they could add a budget multiplier as a factor in a later experiment; if this ranged from 0.5 to 2.0
(say), then budgets for a specific problem would range from one half to twice their initial budget. This would help ensure
that general insight made on solver factors is based on qualitatively similar small, medium, or large budgets, where
small, medium, and large could differ by problem. Similarly, a specialist will be more interested in solver performance
across a wide range of variants (problem-specific factor combinations) for their problem than in predicting the actual
solver performance for a particular variant, but could choose to rerun the SSCONT with a larger budget, or incorporate
a budget-related factor into a new experiment, before proceeding.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

design point

SSCONT SAN

0

1
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Fig. 4. Boxplots of final relative optimality gap, a (1) , across design points for two problems (SSCONT and SAN) from the raw datafile.

5.4.3 Question 3: Are there any outliers or solver factor configurations that lead to unusual behavior? Recall that the
raw datafile may contain results from hundreds or thousands of runs. Consequently, it is not surprising that many of
the histograms or boxplots will reveal large numbers of outliers, in one or both of the typical statistical measures: a
distance over roughly two standard deviations from the mean, or a distance over 1.5 times the interquartile range from
the ends of the box in a box plot.

By construction, none of the design points can be considered an outlier in terms of its combination of factor settings,
but they can be in terms of the solver performance metrics. While a lot of variability is present across the design points
in the ASTRO-DF experiment, none appear to be a clear outlier. In contrast, consider Figure 5a, where three design
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points stand out from the rest. In this notional (synthetic) data, design point 3 has a very large spread, design point 13
has a very large median, design point 15 has a very low spread and low median, and the remaining 14 design points
have boxplots based on 20 observations generated from essentially identical distributions.
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(a) Boxplots of the final relative optimality gap a (1) across
design points for a fictitious solver on a notional problem, from
a raw datafile.
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(b) Scatterplot matrix for six solver performance metrics from
the SSCONT portion of the summary-by-problem-and-solver-
design-point datafile. The same design point is highlighted in
all subplots.

Fig. 5. Examples of two types of plots that may assist in identifying unusual design points.

Another graphic that can reveal design points with unusual behavior is a scatterplot matrix of the summary datafile,
as shown in Figure 5b. One design point is interactively selected as an outlier based on the lower-left subplot; this
highlights it in all subplots. This selected design point is unusual in that the associated version of ASTRO-DF struggles
to achieve even 0.2- or 0.5-solvability. The upper-left subplots indicate that the a (1) mean for this design point is fairly
high while its standard deviation is fairly low. In other words, this version of ASTRO-DF consistently fails to make
good progress on the SSCONT problem. We chose to show plots for a single problem in Figure 5b, but similar plots
could be of interest to a generalist if they were constructed from the summary-by-solver-design-point datafile.

Figures 5a and 5b clarify another important point: unlike situations involving observational data, unusual design points
should not be discarded or ignored. Tracing back to their source may identify bugs in the solver or the solver-problem
interface that can be corrected, i.e., the data farming approach can help verify the solver source code. Additionally,
unusual design points with undesirable behaviors may help both generalists and specialists set boundaries or limits on
the solver factors, while unusual design points with desirable behaviors may help them select appropriate defaults.

5.4.4 Question 4: How are the solver performance metrics correlated? Do they involve trade-offs or behave serendipitously?

This question can be of interest for several reasons. First, at times it may streamline the detailed analysis process. If,
for example, two or more of the solver performance metrics have very strong pairwise correlations, then examining
one (rather than all) of them in greater detail for questions 5–10 may be sufficient. Second, the sign of the correlation
Manuscript submitted to ACM
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between two solver performance metrics provides a partial indication about whether improving one will tend to be
serendipitous (benefitting the other) or involve tradeoffs (worsening the other).

Figure 6 shows a correlation matrix of the means and standard deviations of the ten solver performance metrics.
(Because the observations of the 𝛼-solvabilities are binary responses, their standard deviations are omitted.) One
indication of serendipity in the figure is the strong positive correlation between the a (1) mean and a (1) standard
deviation, because the ideal value for both metrics is 0; consistently and rapidly reducing the relative optimality gap is
desirable. The strong negative correlation between the a (1) mean and the 𝑦 (0.05) mean is also serendipitous because
the ideal value for 𝑦 (0.05) is 1. The very weak positive correlation between the a (1) mean and the 𝑦 (0.5) mean indicates
a slight tradeoff between solver quality and solver speed: solver versions that quickly cut the relative optimality gap in
half were slightly more apt to wind up with a poorer final solution. We defer our discussion of the interesting pattern
in the 4 × 4 highlighted box on the right, along with the gray boxes in the lower triangle, until Question 8.
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Fig. 6. Numeric and graphical correlation summaries for a generalist, from the summary-by-solver-design-point datafile. Numerical
correlations are provided in the lower triangular region. In the upper triangular region, white circles represent positive correlations,
black circles represent negative correlations, and a circle’s area represents the strength of the correlation.
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5.4.5 Question 5. Which solver factors are most influential? One way to answer this question is to use partition tree
metamodels. We follow the approach in [15] and create a partition tree with ten splits for each summarized solver
performance metric and for each problem in the summary-by-problem-and-solver-design-point datafile. We then
multiply the 𝑅2 for each tree by the respective column contributions and categorize the resulting influence as very
very strong (VVS), very strong (VS), strong (S), moderate (M), weak (W) and very weak (VW). These characterizations
are determined by inverse powers of two, denoting contributions to 𝑅2 that are > 0.50, > 0.25, > 0.125, > 0.0625,
> 0.03125 and > 0.015625, respectively. This automated heuristic method limits the number of factors that will be
deemed influential without requiring detailed human-in-the-loop assessments by the analyst. Our results, broken out
by problem, appear in Table 4. Recall that the first six responses are related to the solution quality, while the last ten are
related to the speed at which the solution is found. The 𝑅2 values in Table 4 are sufficiently high that at least one solver
factor is deemed influential, either exhibiting VS or VVS influence. If 𝑅2 were low for some other solver performance
metric, we could have seen few (if any) factors showing up with more than medium influence.

An inventory specialist would be interested in the SSCONT results from Table 4. For this experiment, it is clear that
𝛾1 was the most influential factor, with VVS effects for 12 of the 16 solver performance metrics and VS or S for the
remaining four. The factor 𝛾2 is also very influential, with medium to very strong effects on all but four of the responses.
The factor [1 was much less influential, but had an impact on a few solvability metrics and several metrics related
to the solver’s speed. The factor [2 was the least influential, with none of the factors influencing any of the solution
quality metrics, while contributing to only two of the ten speed-related metrics. The inventory specialist’s next step
might be to examine more closely the leaves of the partition trees to determine desirable settings for ASTRO-DF’s
factors—particularly 𝛾1 and 𝛾2. One nice characteristic of partition tree metamodels is that they make few assumptions
about the nature of the influence. For example, increasing an influential factor could result in increasing or diminishing
returns on a solver performance metric, or there could be a “sweet spot” that is advantageous. A specialist in charge of
project management for the SAN problem could likewise draw insights from the SAN results in Table 4.

Table 4. Summary of factor influences on ASTRO-DF performance metrics. Classifications are determined by inverse powers of 2,
and are categorized as very very strong (VVS), very strong (VS), strong (S), medium (M), weak (W) and very weak (VW).

SSCONT SAN
Response [1 [2 𝛾1 𝛾2 𝑅2 [1 [2 𝛾1 𝛾2 𝑅2

a (1) mean VVS VS 0.859 M M VVS 0.780
a (1) stdev VVS VS 0.771 M M W VVS 0.896
𝑦 (0.05) VVS S 0.910 VVS VS 0.876
𝑦 (0.1) VW VVS VS 0.901 W VS VVS 0.909
𝑦 (0.2) M VS M 0.875 VW W S VVS 0.606
𝑦 (0.5) VVS 0.922 VVS VS 0.740
𝐴 mean S VVS S 0.908 W VS VVS 0.930
𝐴 stdev VVS W 0.724 M M VVS 0.948
𝜏 (0.05) mean VVS S 0.876 VVS VS 0.910
𝜏 (0.05) stdev S S VS 0.713 W VVS S 0.853
𝜏 (0.1) mean VW VVS VS 0.909 W VS VVS 0.901
𝜏 (0.1) stdev VVS S 0.880 S W S VS 0.789
𝜏 (0.2) mean M VS M 0.606 VW W S VVS 0.875
𝜏 (0.2) stdev W W S VS 0.713 S VS VS 0.904
𝜏 (0.5) mean VVS 0.740 VVS VS 0.922
𝜏 (0.5) stdev VVS W 0.600 VW VS VS 0.800
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Note that a generalist might be less interested in the specific problem and treat the choice of problem as a noise factor
(see Question 9). This corresponds to growing a tree from the summary-by-solver-design-point datafile rather than
growing two separate trees from the SAN and SSCONT portions of the summary-by-problem-and-solver-design-point
datafile. When growing a single tree, the “Problem” (a qualitative factor) could be included as a potential explanatory
variable; this might be worthwhile to a generalist if the solver’s performance differs greatly across different types of
problems.

Other types of metamodels are possible. For example, stepwise regression can be used to fit metamodels containing
low-order polynomial terms. Remember, however, that statistical significance is not the same as practical importance.
With the very large datasets that can result from a data farming experiment, the analyst should place a higher emphasis
on parsimony. This may mean removing many statistically significant terms from automatically generated models
because their relative impact is negligible.

5.4.6 Question 6: Are there any important interactions? Consider the plots in Figure 7. On the left, Figure 7a shows the
first three layers of the 10-split partition tree for 0.1-solvability. These do not correspond to the first three splits. An
interaction between 𝛾1 and 𝛾2 is revealed by the difference in splitting on the left and right branches. The light and dark
bars in each leaf indicate the proportion of non-solved and solved runs, respectively, with dark bars being preferred.
The top level shows that the majority of the runs were able to achieve 0.1-solvability. The middle level shows that larger
𝛾2 values (slower rate of trust-region contraction) are associated with a greater likelihood of finding good solutions.
The third level shows that 𝛾2 should not be too large, and that if 𝛾2 is small then it is very important for 𝛾1 to be large,
i.e., if the penalty of not succeeding is a significant contraction, then a success should let the trust region recover its
size with a significant expansion.

On the right, Figure 7b is a graphical depiction of interaction effects from a regression metamodel for the mean
area under the curve (the mean of 𝐴) after using stepwise regression, combined with expert judgment, to obtain a
parsimonious metamodel. The upper-right box shows that if 𝛾1 is set to its low value (1.0), then increasing 𝛾2 leads
to a linear decrease in the 𝐴 mean; if 𝛾1 is set to its high value (3.0), then increasing 𝛾2 leads to a linear increase in
the 𝐴 mean. In other words, the best setting for 𝛾2 depends on the best setting for 𝛾1, and vice versa—i.e., there is an
interaction. Note, however, that because low values of the 𝐴 mean are desirable and the two lines do not cross, the
better choice for 𝛾1 is 1. The lower-left box is another snapshot of the multidimensional metamodel. Here we see that
after fixing the value of 𝛾2, 𝛾1 has a nonlinear (quadratic) effect on the solver performance metric. If 𝛾2 = 0.9 then the
metric gets consistently worse as 𝛾1 increases. In contrast, if 𝛾2 = 0.1 then the best setting for 𝛾1 is around 2.0 where
the curve achieves its minimum value.

5.4.7 Question 7: What are the interesting regions and threshold values in the solver factor space? As we have seen in
Figure 7a, the leaves of partition trees may themselves indicate interesting regions. As we move from left to right across
the leaves, the proportion of runs on which the problem is solved to 0.1 optimality decreases. In particular, below a
certain level for 𝛾2 (the rate of trust-region contraction), solving the problems accurately largely depends on choosing
larger 𝛾1 (the rate of trust-region expansion). While the latter observation aligns with a general guideline of choosing
𝛾2 = 𝛾−11 , our results show that the choice of 𝛾2 is more important (rather than setting 𝛾1 and taking the reciprocal), and
the inverse relationship may not be accurate or of much help, depending on the choice of 𝛾2. Although this insight
matters to a generalist, the findings in Table 4 suggest that the importance of 𝛾2 over 𝛾1 is more problem-dependent;
e.g., for the SSCONT problem, all solver performance metrics are more sensitive to the choice of 𝛾1 than 𝛾2.
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(a) Partial partition tree for a generalist, showing the top three layers of the
10-split partition tree for the 0.1-solvability, 𝑦 (0.10) , for both problems using
the raw datafile. The light and dark bars in each leaf indicate the proportions
of non-solved and solved runs, respectively.
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(b) Interaction profiles for a specialist, based on
stepwise regressionmetamodel for𝐴mean for the
SSCONT problem. There is a quadratic effect for
𝛾1, a linear effect for 𝛾2, and a strong interaction.

Fig. 7. Two types of graphs for revealing interaction effects from two types of metamodels for different solver performance metrics.

Another possibility is a contour plot; an example that might be of interest to a generalist (i.e., one not broken
out by application) is shown in Figure 8a. This plot is based on the raw datafile, but is identical to that based on the
summary-by-solver-design-point datafile because it makes use of the mean values at each point. We remark that for
experiments involving large numbers of factors, Questions 5 and 6 may indicate which pairs of factors to select for
contour plots for specific solver performance metrics, since considering all possible pairs may be prohibitive. The
contour plots in Figures 8b and 8c depict metamodels of the mean and standard deviation of the final relative optimality
gap for the SAN problem and appear smoother than the plot in 8a because they are based on regression metamodels.
The highlighted region in Figures 8b and 8c is one where good results are obtained for both solver performance metrics.
A specialist might be interested in a follow-up experiment that focuses more closely around this region.

5.4.8 Question 8: Are any of the results counterintuitive? A counterintuitive finding can be either a bug or a feature. Large-
scale data farming experiments can expose behaviors that would otherwise go unnoticed. On further inspection, one of
two things might happen. First, if the finding can be traced back to its cause and shown to be a bug (either a miscoding
or an inappropriate assumption), this bug can be corrected. This is part of the verification process. Alternatively, the
finding might withstand further scrutiny, and so change our intuition. This is part of the validation process.

A few counterintuitive results appeared earlier. In Question 1, we remarked that some runs yielded a (1) values that
were less than 0 or much greater than 1. The explanation for this is twofold. Because the optimal solution is unknown,
we rely on an estimate of the response mean based on postreplications. This means that if several recommended
solutions have similar near-optimal objective function values, and the postreplications on the observed best solution
improve its estimated solution value, that can lead to small negative numbers reported for the final relative optimality
gap. On the other hand, a final relative optimality gap greater than 1 can occur if the solver recommends a solution that
it believes to be better than 𝑥0—based on its limited sampling at said solution—when in fact the solution is worse. (More
commentary on these situations is given in [6].) The same reasoning explains why values of 𝐴 outside of the interval
[0, 1] are possible.
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⌫(1)

(a) Contour plot of a (1) vs. two influential
factors 𝛾1 and 𝛾2 using the raw datafile.
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⌫(1) mean

(b) Contour plot of the a (1) mean vs. 𝛾1
and 𝛾2 from a regression metamodel fit to
summarized data for SAN.
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⌫(1) stddev

(c) Contour plot of a (1) standard deviation
vs. 𝛾1 and 𝛾2 from a regression metamodel
fit to summarized data for SAN.

Fig. 8. Contour plots. A generalist might be interested in plot (a), while plots in (b) and (c) might be of interest to a specialist. The
regions highlighted in (b) and (c) indicate where both solver performance metrics are favorable for SAN.

Another example of seemingly counterintuitive results is the 4 × 4 box in Figure 6 highlighted for its interesting
pattern. Before looking at the correlation plot, we anticipated that for any given 𝛼 , the 𝜏 (𝛼) mean and the 𝑦 (𝛼) mean
would be negatively correlated, because finding a satisfactory solution quickly corresponds to low 𝜏 (𝛼) and high 𝑦 (𝛼).
We also anticipated that the strength of the correlation would be highest when 𝜏 (·) and 𝑦 (·) used the same 𝛼 , rather
than different 𝛼s. The highlighted box shows patterns for 𝜏 (0.2) that differ in both the sign and the magnitude of
correlation from those of 𝜏 (0.5). However, upon further investigation we realized this was an artifact of the different
numbers of design points used to compute the correlations due to censoring. We constructed the correlation plot in
Figure 6 using all available data, but recall that when the solver cannot 𝛼-solve the problem within the allowable budget
in a run, then that run’s 𝜏 (𝛼) is a missing value and the run is not part of correlation computations between the 𝜏 (𝛼)
mean or variance and the 𝑦 (𝛼1) for all 𝛼1.

Constructing the correlation plot was useful to us, because it alerted us to the censored data issue. In such cases,
the analyst should be aware that some correlations will not be easily interpretable. In our experiment, the grayed-out
rectangles in the lower triangle correspond to situations where between 16.3% and 63.5% of the runs had missing 𝜏 data.
In contrast, if we had used sufficiently large budgets that all the runs were solved to 𝛼 = 0.05, then 𝑦 (𝛼) ≡ 1 for all
𝛼 ≥ 0.05 and all correlations between a 𝜏 (𝛼1) mean or standard deviation with a 𝑦 (𝛼2) would equal zero.

How, then, should we assess the joint behavior of the 𝑦 (𝛼) and 𝜏 (𝛼)? Both are important, and both provide different
information than can be gleaned from the a (1) and 𝐴 means and standard devations alone. A better way of showing
the relationships involving censored data is via the use of heatmaps, such as those shown in Figure 9. Each row in
the heatmaps corresponds to a single design point in the summary-by-solver-design-point file. The columns specify
conditions on at least one solver factor or metric, and the color of each cell corresponds to the proportion of runs for
which the conditions are satisfied for the solver performance metric of interest (light=low, dark=high).
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Heatmaps such as that in Figure 9a are useful when few, if any, 𝜏 (𝛼) values are censored for a particular 𝛼 . The
columns correspond to different budget thresholds for this 𝛼 . In these situations—especially if 𝛼 is near zero—it may be
of interest to calculate how likely the solver is to achieve a specified performance without exceeding smaller thresholds
(proportions) of the normalized budget. We calculated these values for thresholds of 0.1 to 1.0 in steps of 0.1. This may
help the analyst determine whether or not a smaller budget would suffice; in our experiment, all the solver design points
are 0.5-solvable after expending only a small portion of their budget. Conversely, if many 𝜏 (𝛼) values are censored for
a particular 𝛼 , then a heatmap such as that in Figure 9b is more informative. The columns correspond to different 𝛼
for a particular threshold. It may help the analyst determine whether or not accepting a larger 𝛼 would mitigate the
censoring issues without requiring larger budgets, which could be of particular interest if (near) real-time solutions are
needed. Note that in either heatmap, we do not need all of the rows to exhibit good performance, just some of the rows.
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(a) Heatmap of the proportion of runs for which 𝜏 (0.5) ≤
threshold for various budget thresholds.
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(b) Heatmap of the proportion of runs for which 𝜏 (𝛼) ≤ 0.6.

Fig. 9. Heatmaps of the 𝜏 (𝛼) for a generalist created from the summary-by-solver-design-point datafile. Each row corresponds to a
single design point, and the cell shadings reflect how often 𝜏 (𝛼) satisfied certain conditions. In (a), where little censoring occurs at
the end of the run (threshold = 1), almost all the solver design points are highly likely to reach 0.5-solvability early in the run. In (b),
where a great deal of censoring occurs, we observe how moving from left to right (increasing 𝛼 ) increases how likely it is to achieve
𝛼-solvability within a fixed budget threshold.

5.4.9 Question 9: Which solver factor configurations are most robust, leading to consistently good performance for a solver

metric of interest? Although this is one of the later questions, answering it is very important in the context of simulation
optimization. Both generalists and specialists seek settings for the solver factors that produce consistently good solver
performance metrics across a range of problems, regardless of the problem-specific factors or data characteristics. This
can be accomplished by incorporating two types of factors into the experiments: decision factors that are controllable,
and noise factors that are controllable within the simulation experiment, but not controllable or controllable only at
great cost in a more general setting. In our context, the noise factors for a specialist could consist of problem-specific
factors in Table 3; the noise factors for a generalist could be as limited as a list of different problems, factors that describe
problem characteristics such as dimensionality and convexity, or a mixture of general and problem-specific factors.
The experiment design can be constructed by including all factors (solver factors, the categorical problem factors, and
problem-specific factors) in a single design for greater efficiency, or by crossing separate designs for decision and noise
factors, to facilitate decision-factor comparisons without requiring metamodels.
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After the solver experiments have been conducted, a loss function can quantify how well the solver performed with
respect to a particular solver performance metric. Squared-error loss relative to an ideal outcome (a.k.a. the target
value) is often useful; outcomes close to the target contribute little to the overall loss, while those far from the target
contribute a great deal. For example, the ideal (though unachievable) value for 𝐴 is 𝐴∗ = 0. A squared error loss of the
form 𝑙𝑜𝑠𝑠𝐴 = (𝐴 −𝐴∗)2, described in Section 2.2, means that the expected loss of a given solver version (aggregated
over the noise factor space) decomposes into the form E[𝑙𝑜𝑠𝑠𝐴] = (E[𝐴] −𝐴∗)2 + Var(𝐴) . This is one reason why we
considered both the means and standard deviations when summarizing our solver performance metrics. Metamodels fit
to the mean and standard deviation of 𝐴, for instance, can be used to determine if there are solver factor settings that
yield results consistently near zero. Many of the graphical methods discussed above can also be used. For example,
the comparative box plots in Figure 5a clearly show that design point 15 is the most robust; contour plots such as
those in Figures 8b and 8c can be used if a solver performance metric’s mean and standard deviation are the two solver
performance metrics of interest. For more details on robust design in the simulation context, see [23, 25]. Besides using
the aforementioned loss function to capture the robustness of a solver version, one can use VaR(𝐴) or CVaR(𝐴).

Alternatively, a generalist (specialist) may be looking for a metamodel that determines solver factor configurations
that yield the highest likelihood of finding very good solutions across problems (variations of a problem). For example,
this could mean building a metamodel of the 𝑦 (0.05) mean constructed from the summary-by-solver-design-point
datafile. We remark that, as before, one could instead look at a metamodel fit to the 𝑙𝑜𝑠𝑠𝑦 (0.05) values, which are
computed with the ideal value of 1 and the variance taken with respect to problems (variations of a problem) used in
the experiment, computed using the summary-by-problem-and-solver-design-point datafile.

5.4.10 Question 10: Are there any configurations that performwell w.r.t. multiple solver performance metrics? Wepresented
multiple solver performance metrics and discussed them throughout this paper. The mean and variance of the final
relative optimality gap a (1), together with the mean 𝛼-solvabilities for various 𝛼s, measure the quality of the solver’s
solutions; the means and variances of the area under the progress curve, 𝐴, and 𝛼-solve times, 𝜏 (𝛼), measure the speed
at which better and better solutions are identified.

Clearly there are multiple performance measures of interest to either generalists or specialists who decide to conduct
data farming to tune solver factors. We have shown in multiple ways that our primary solver performance metrics
capture different aspects of the solution quality and the speed at which it is achieved: no solver configuration dominates
on all measures (Figure 1b); correlations may mean that improving one solver performance metric is detrimental
to another (Figure 6); and the sets of most influential factors or interactions differ across the solver performance
metrics (Table 4). Robust analysis provides a quantitative approach for making tradeoffs among means and standard
deviations of quantitative solver performance metrics. Assigning weights to loss functions, if feasible, can similarly help
identify solver factor settings that are robust (in terms of minimizing a weighted multi-objective loss) across different
performance measures [27]. Heatmaps could include columns for more solver performance metrics, potentially with
their own sets of thresholds.

A few other approaches are worthmentioning. One is to add user-specified constraints for multiple solver performance
metrics, and create a new column in the appropriate raw or summary datafile indicating whether a particular row
simultaneously satisfies all of the constraints. To the extent that metamodels can do a reasonable job of capturing
the relationship between solver factors and such a binary response, this will help set solver factor defaults or provide
guidance about modifying the defaults in different settings. We can also explore this graphically, as with the parallel
plot in Figure 10 based on the summary-by-problem-and-solver-design-point datafile. Eight solver performance metrics
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are shown, with the 𝑦-axis scaled separately for each metric between its minimum and maximum in the raw datafile.
We used coded numeric values so we could include the problem in this plot. Each trace in the plot corresponds to one
of the 98 design points. Highlighting the lines that fall within the highest observed 𝑦 (0.05) in Figure 10 reveals that
these design points yield good performance on the other seven measures as well. Note also that they all correspond to
the SAN problem. The dashed line indicates a design point that works well on all measures for SSCONT. A second
is to identify a Pareto front, providing a set of solver parameter settings from which the generalist or specialist can
choose, depending on which solver performance metrics they deem most important. If the solver factors are continuous,
then spreading the choices in the factor space will keep the computational requirements manageable and provide the
decision maker with a set of distinct alternatives [4, 29].

SAN

SSCONT

<latexit sha1_base64="6X3thcLu1bD8th9gFvNl2ynAB/k=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWAR6qYk4mtZcOOygn1AE8pkOmmHziPMTMQSsvFX3LhQxK2f4c6/cdpmoa0HLhzOuZd774kSRrXxvG9naXlldW29tFHe3Nre2XX39ltapgqTJpZMqk6ENGFUkKahhpFOogjiESPtaHQz8dsPRGkqxb0ZJyTkaCBoTDEyVuq5h4FIq/5pAINhJB+zQHHICRJ5z614NW8KuEj8glRAgUbP/Qr6EqecCIMZ0rrre4kJM6QMxYzk5SDVJEF4hAaka6lAnOgwmz6QwxOr9GEslS1h4FT9PZEhrvWYR7aTIzPU895E/M/rpia+DjMqktQQgWeL4pRBI+EkDdinimDDxpYgrKi9FeIhUggbm1nZhuDPv7xIWmc1/7J2cXdeqVeLOErgCByDKvDBFaiDW9AATYBBDp7BK3hznpwX5935mLUuOcXMAfgD5/MHpYaVvw==</latexit>
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<latexit sha1_base64="+3rSis5nl9KYqp7OUmwZWpPty5w=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZREfC0LblxWsA9oQplMpu3QeYSZSbGEuvFX3LhQxK1/4c6/cdpmoa0HLhzOuZd774kSRrXxvG9naXlldW29sFHc3Nre2XX39htapgqTOpZMqlaENGFUkLqhhpFWogjiESPNaHAz8ZtDojSV4t6MEhJy1BO0SzEyVuq4h4FIy/5pAIN+JB+yQHGoTUyG445b8ireFHCR+DkpgRy1jvsVxBKnnAiDGdK67XuJCTOkDMWMjItBqkmC8AD1SNtSgTjRYTb9YAxPrBLDrlS2hIFT9fdEhrjWIx7ZTo5MX897E/E/r52a7nWYUZGkhgg8W9RNGTQSTuKAMVUEGzayBGFF7a0Q95FC2NjQijYEf/7lRdI4q/iXlYu781K1nMdRAEfgGJSBD65AFdyCGqgDDB7BM3gFb86T8+K8Ox+z1iUnnzkAf+B8/gCc4JZO</latexit>

⌫(1) stdev
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A meanProblem
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y(0.05) mean
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y(0.2) mean
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y(0.5) mean

Fig. 10. Parallel plot for a generalist. Each of the 98 traces represents summarized output for eight solver performance metrics
from a single row of the summary-by-problem-and-solver-design-point datafile. The minimum and maximum values for each
solver performance metric are the lowest and highest in this datafile, respectively. Low values are desirable for the first four solver
performance metrics involving a (1) and𝐴, while high values are desirable for the last four. Traces corresponding the highest observed
𝑦 (0.05) mean are indicated with dark solid lines and come from the SAN problem. The dashed line indicates a solver design point
that performs well for SSCONT.

5.5 Discussion

We have seen that a wealth of information can be gleaned from the data produced by a design of experiments over
solver factors. The “Top Ten” questions can help to guide the analysis about what to look for when evaluating solver
performance and how to visualize the results. From even just a rudimentary experiment that farmed four factors
controlling trust-region expansions and contractions, we gained new insights into the behavior of ASTRO-DF on two SO
problems. This included observing that on these problems, rapid progress and run-to-run consistency are not mutually
exclusive qualities and that the settings of the expansion rate 𝛾1 and contraction rate 𝛾2 have a strong influence on the
solver’s progress, with there being an interaction between them. We found that, depending on the problem, one of
these factors may be more influential than the other, but thresholds at which to expand or contract the trust region (i.e.,
[1 and [2) are less critical in both problems.

The analysis carried out in this section was for a non-adaptive experiment, wherein the factors of interest and
their ranges were specified up front, a design was generated, and a common number of runs were performed at each
design point. However, the data-farming approach can and arguably should be applied as an iterative process. It is
often good practice to start with a preliminary design that includes many factors and, from the results, identify those
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that most influence solver performance. In early stages of solver development, this approach assists in verifying the
implementation by subjecting the solver to a massive sensitivity analysis, where the analysis questions are much more
likely to uncover bugs in the code than a trial-and-error approach or more limited experimentation. In later stages,
solver factor ranges can be refined or a crossed design (where solver factors deemed unimportant could be relegated to
the noise factor design) can help to focus the investigation on the important ones. The initial design can also be refined
by adding stacks to fill under-covered regions of the solver factor space and additional runs can be performed at design
points with highly variable solver performance metrics.

The proposed framework can also be used in ways other than what we have demonstrated. While the analyses can
help to build a deeper understanding of how a solver’s factors affect its empirical performance, they can also shed light
on questions about the design of the solver itself. Such questions could be of practical importance, such as the need
(or lack thereof) for particular operations within the solver, or theoretical importance, such as how a solver’s factors
might need to change adaptively throughout a run to ensure convergence. Specifically, for trust-region methods like
ASTRO-DF, a generalist might wish to assess the benefits of various designs for sampling solutions within the trust
region or to determine whether the thresholds [1 and [2 should be updated over time.

A specialist may instead be interested in using the framework for tuning the solver, which refers to finding solver
parameter settings that deliver good performance on a given problem or class of problems. If the user needed to solve
only a single problem, then a small design over solver factors could even be conducted within the solver, in a preliminary
phase, by running a few pilot runs with a fraction of the budget before committing to a configuration of solver factors.
If the user instead needed to solve a sequence of similar problems, then a larger offline design of experiments could
help identify solver factor configurations that are robust to variations in the problem factors. The task of finding the
best configuration of solver factors could be carried out by fitting a metamodel to one or more solver performance
metrics, e.g., the mean and standard deviation of the final relative optimality gap a (1), and optimizing.

6 CONCLUSION

We introduce a data-farming framework for systematically studying the performance of SO solvers as a function of
their parameters, which we term solver factors. In particular, we explore how a design over solver factors can be
used to investigate their influences on multiple solver performance metrics measuring the rate of improvement in the
recommended solutions and the quality of the solution ultimately recommended. The framework offers a flexible and
powerful means of exploring important questions of interest to a range of stakeholders, from solver developers to end
users, from solver generalists to specialists. We advocate for solver developers to embrace DOE as a tool for testing and
improving their solvers prior to deployment.

In this paper, we focused on solver factors that remain fixed throughout the solver’s process of finding better and
better solutions. However, the framework permits the study of solver factors that change adaptively and can help devise
schedules or conditions for updating them that yield strong solver performance. Categorical factors that fundamentally
alter the operations of a solver, such as the type of local model (linear versus quadratic) constructed within a trust-region
solver, can also be varied. Although we varied only solver factors in this paper, the framework can be extended in
several noteworthy directions by incorporating other experiment parameters as factors in the design. For example, the
initial solution 𝑥0 and the budget 𝑇 could be varied to assess how the solver’s long-term behavior is affected; e.g., does
it converge to different local optima when starting in different regions? In addition, factors of the simulation model
can be varied, as is typically done in data farming experiments, to illuminate how robust a solver is at finding good
solutions when the simulation model is subject to misspecification. This poses an additional level of uncertainty, called
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input uncertainty, that must be factored into the solver performance metrics. More broadly, a solver can be tested over
a large set of problems exhibiting different properties, including the dimension or geometry of the feasible region and
the structure of the objective function, to develop guidelines for users when setting the factors of a solver that is to be
run on a specific problem.

Further research in this space will be accompanied by enabling the creation and execution of designs in the SimOpt
testbed [8]. This will involve developing a graphical user interface for users to first set up a design—by selecting the
problems and solvers and the factors they wish to include—and then run the designed experiment. The final product
will be an output file containing the specifications of each design point and the solver performance metrics discussed in
this paper. This file can then be loaded into a user’s preferred statistical software package for subsequent analysis. We
also aim to add more solvers and problems to the library to enable more wide-ranging experiments. Ultimately, we
hope to encourage a fuller study of well-established solvers to see what more can be learned about them and what
guidance can be provided to end users.
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