Accelerating Derivative-Free Simulation Optimization

Yunsoo Ha Edward P. Fitts Department of Industrial and Systems Engineering

Simulation Optimization: Problem Statement

Problem:

$\min_{x \in \mathbb{R}^d} f(x) \coloneqq \mathbb{E}[F(x,\xi)],$

- $f: \mathbb{R}^d \to \mathbb{R}$ is smooth and bounded from below;
- f estimated by $\overline{F}(x,n) = n^{-1} \sum_{j=1}^{n} F(x,\xi_j);$
- derivative information is not directly available.

Challenges:

- Need to approximate gradient (biased gradients).
- Simulation oracle call typically takes quite a while.

	Simulation (1 day):	
New	Evaluating the effect of a given decision	
recommended (in the complex system) \
decision	Optimization (10 mins):	/ r
variables	Choosing decision variables	< r
	from an allowed set	9

Fig 1. An iteration within a simulation optimization framework

"For efficiency, we want to minimize the number of simulation oracle calls during optimization"

Adaptive Sampling and Trust Region (TR)

Adaptive sampling:

Simulation effort N(x) is a stopping time determined by $N(x) = \min\{n: \widehat{SE}(x, n) \le \text{optimality gap at } x\}.$

Stochastic trust-region method:

- Optimization evolves through minimizing local models within a region of radius Δ .
- TR is a robust solution method in derivative-free settings and in the presence of noise.
- : Function Estimates $\overline{F}(\cdot, N(\cdot))$

Interpolation model: $M_k(x)$

 $X_k^2 \ \tilde{X}_{k+1} X_k \quad X_k^1$ χ^* Fig 2. An iteration of the adaptive sampling trust-region method "How do we handle high-dimensional problems with the adaptive sampling trust-region method (ASTRO-DF)?"

Accelerating ASTRO-DF

Acceleration by reusing the previous simulation results:

- Use a rotated coordinate basis so that the required number of design point becomes from $\mathcal{O}(d^2)$ to $\mathcal{O}(d)$.
- Reuse two design points and their replications.

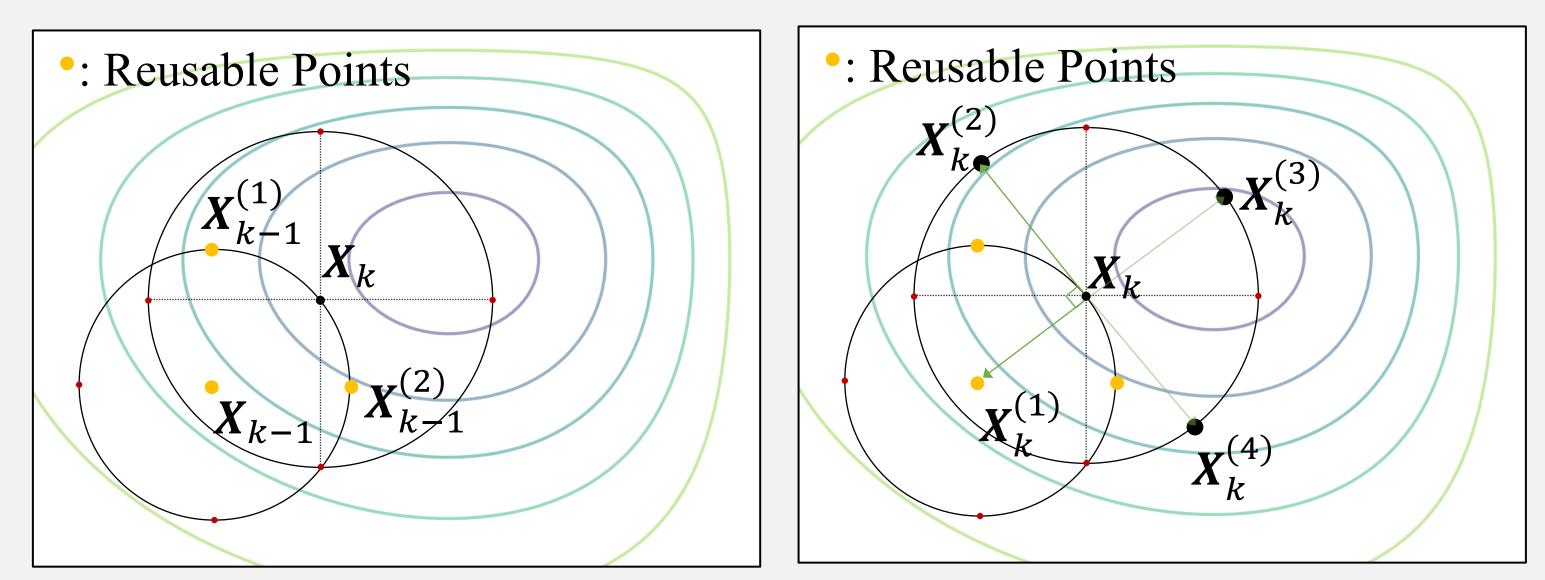


Fig 3. The design point X_{k-1} , being the farthest from X_k among the reusable design points, is reused as $X_k^{(1)}$

Acceleration with a direct search:

• When an interpolation point has a lower function estimate, it uses that as the candidate point instead of the point suggested by the model.

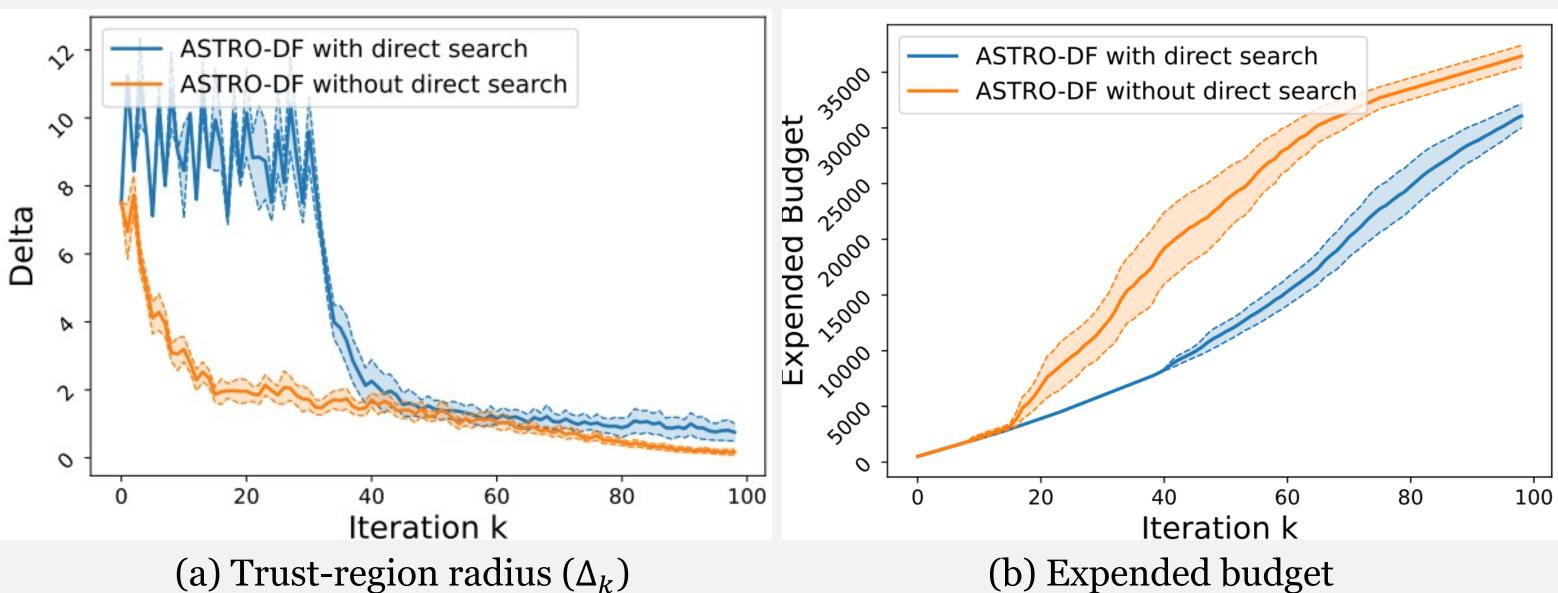
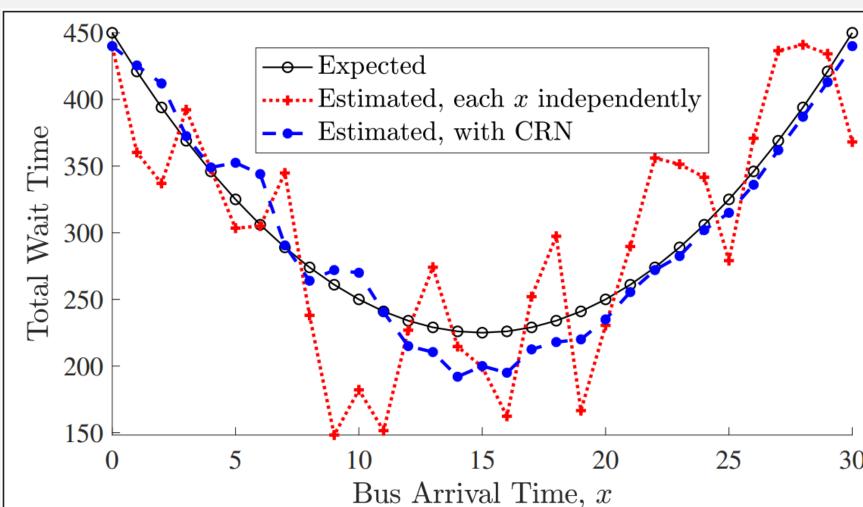


Fig 4. Using the direct search increases the chances of accepting a new incumbent and prevents step size from shrinking too quickly during the early stages of the search

Acceleration with Common Random Numbers:

- Querying the oracle with the same random number.
- Preserving structure inherent to function sample-paths.



Estimated

objective value at the new

recommended solution

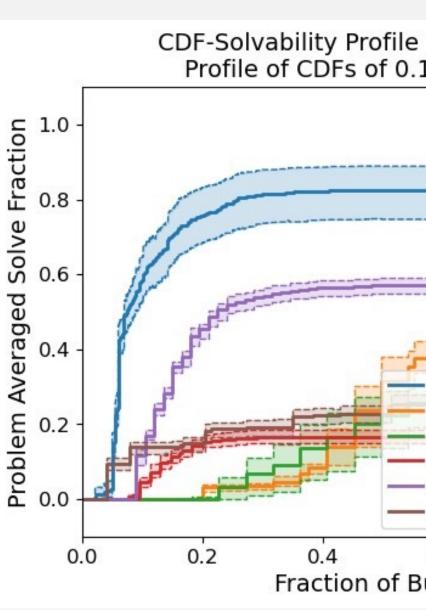
f(x)

Fig 5. The black curve is the true function *f*, the blue curve is *f*'s estimate constructed with CRN, and the red curve is *f*'s estimate constructed with independent sampling.

ASTRO-DF vs Accelerated ASTRO-DF:

Interpolation set selection Interpolation set Candidate point by *#* of reusing points

Numerical Results:



Theoretical Results:

Most existing stochastic TR for derivative free optimization does not have guarantees on the complexity.

0		
Method	Iteration complexity	Sample complexity
VNSP ¹	_	_
LB^2	_	_
STR ³	_	_
STORM ⁴	$\mathcal{O}(\epsilon^{-2})$	$ ilde{\mathcal{O}} \; (\epsilon^{-6})$
ASTRO-DF	$\mathcal{O}(\epsilon^{-2})$	$\tilde{\mathcal{O}}(\epsilon^{-6})$
ASTRO-DF with CRN	$\mathcal{O}(\epsilon^{-2})$	$ ilde{\mathcal{O}}~(\epsilon^{-4})$
1 Deng and Ferris (2009) 2 Larson and Billups (2016)	3 Rinaldi et al (2023) 4 Chen et al (2018), Bl	anchet et al (2019), Jin et al (2023)

• ASTRO-DF is a prominent algorithm for derivative-free problems that adaptively allocates simulation budget for efficiency but lacks flexibility in higher dimension.

- We accelerate ASTRO-DF using three key ideas: + 1) Reuse strategy and 2) CRN for saving budget per iteration, + 3) Direct search for a slower convergence rate of step size.
- CRN improves the sample complexity of ASTRO-DF from $\tilde{\mathcal{O}}$ (ϵ^{-6}) to $\tilde{\mathcal{O}}$ (ϵ^{-4}), outperforming the existing results.

References - Shashaani, S., F. Hashemi, and R. Pasupathy. 2018. "ASTRO-DF: A class of adaptive sampling trust-region algorithms for derivative-free stochastic optimization". SIAM Journal on Optimization28(4):3145-3176 - Ha, Yunsoo, Sara Shashaani, and Raghu Pasupathy. 2023. "On Common-Random-Numbers and The Complexity of Adaptive Sampling Trust-Region Methods". https://optimization-online.org/wp-content/uploads/2023/08/astrodf-complexity-onlineversion.pdf.

ASTRO-DF Random (d+1)(d+2)/2Model ≥ 0

Accelerated ASTRO-DF **Rotated Coordinate Basis** 2d+1 Model + Direct Search 2

Results

for SOL 1-Solve		г	
History-ini	formed As	STRO-DF	
ADAM			
- ALOE			
 STORM 			
NELDMD			
- STRONG			
0.6	0.8	1.0)
Budget			

Methods:

- 1. Direct search method • Nelder-Mead
- 2. Model-based methods • STORM
- STRONG
- 3. Gradient-based methods • ALOE
- ADAM

Fig 6. The fraction of the "solved" problems on 60 problems in SimOpt library

Conclusion