
SimOpt: A Testbed for Simulation-Optimization Experiments
David J. Eckman,a,* Shane G. Henderson,b Sara Shashaanic

aWmMichael Barnes ’64 Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843;
bSchool of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853; cEdward P. Fitts Department
of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695
*Corresponding author
Contact: eckman@tamu.edu, https://orcid.org/0000-0002-6473-6434 (DJE); sgh9@cornell.edu, https://orcid.org/0000-0003-1004-4034
(SGH); sshasha2@ncsu.edu, https://orcid.org/0000-0001-8515-5877 (SS)

Received: January 7, 2022
Revised: August 25, 2022; December
21, 2022
Accepted: January 8, 2023
Published Online in Articles in Advance:
���� ��, 2023

https://doi.org/10.1287/ijoc.2023.1273

Copyright: © 2023 INFORMS

Abstract. This paper introduces a major redesign of SimOpt, a testbed of simulation-
optimization (SO) problems and solvers. The testbed promotes the empirical evaluation and
comparison of solvers and aims to accelerate their development. Relative to previous ver-
sions of SimOpt, the redesign ports the code to an object-oriented architecture in Python; uses
an implementation of the MRG32k3a random number generator that supports streams, sub-
streams, and subsubstreams; supports the automated use of common random numbers for
ease and efficiency; includes a powerful suite of plotting tools for visualizing experiment
results; uses bootstrapping to obtain error estimates; accommodates the use of data farming
to explore simulation models and optimization solvers as their input parameters vary; and
provides a graphical user interface. The SimOpt source code is available on a GitHub reposi-
tory under a permissive open-source license and as a Python package.

History: Accepted by Ted Ralphs, Area Editor for Software Tools.
Funding: This workwas supported by the National Science Foundation [Grant CMMI-2035086].
Supplemental Material: The software that supports the findings of this study is available within the paper

and its Supplemental Information (https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.
1273) as well as from the IJOCGitHub software repository (https://github.com/INFORMSJoC/2022.
0011) at (http://dx.doi.org/10.5281/zenodo.7468744).

Keywords: simulation optimization • solvers • experimental design • common random numbers

1. Introduction and Motivation
A simulation-optimization (SO) problem is an optimiza-
tion problem where the objective function or constraints
are evaluated (approximately) through a stochastic simu-
lation. A wide variety of problems can be formulated as
SO problems, and although quite a few SO solvers exist,
there is tremendous roomformoredevelopment. SimOpt
(Eckman et al. 2021) is a suite of SO problems and solvers
that supports the testing and development of SO solvers,
with many goals including highlighting the performance
of solvers over practically relevant timescales, helping
identify challenging problems that defy efficient solution
with current solvers, facilitating solver comparisons, and
providing a testbed to aid solver development and im-
provements (see Eckman et al. (2023) for a fuller discus-
sion of these goals). SimOpt has evolved over quite some
time (Pasupathy and Henderson 2006), with the most
recent version prior to this release built inMATLABwith
a standardized interface and automated generation of a
small number of plots (Eckman et al. 2019).

SimOpt has not yet achieved its primary goal of
broad adoption by SO researchers. Certainly, it has
been used to amodest extent by researchers seeking test
problems, as evidenced by personal communications

received by the authors, but widespread adoption of its
solver-comparison capabilities has remained elusive.
We believe the reasons are four-fold. First, the earliest
instantiation of SimOpt did not have standardized prob-
lem interfaces, making it difficult to test a range of pro-
blems with a solver. That was resolved fairly recently
(Eckman et al. 2019), with Dong et al. (2017) showcasing
the potential unlocked by that standardization. Second,
the use of the proprietary software MATLAB limited
accessibility, which we resolve here by using Python.
Third, the class of problemswas not rich, whichwe have
partially addressed in this new version through the sep-
aration of models from problems, so that now many pro-
blems can be built from the same simulation model. In
addition, we can vary factors to create families of similar
problems from a single base problem. Fourth, the set of
people contributing to SimOpt was smaller than it is
today; some initial momentum was needed, and we
believewe nowhave thatmomentum.

This paper introduces a comprehensive reimagining
and redesign of SimOpt that significantly enhances its
functionality while increasing its ease of use. In addition
to SimOpt’s original purpose of providing a testbed for
benchmarking solvers and spurring their development,

1

INFORMS JOURNAL ON COMPUTING
Articles in Advance, pp. 1–14

ISSN 1091-9856 (print), ISSN 1526-5528 (online)https://pubsonline.informs.org/journal/ijoc

mailto:eckman@tamu.edu
https://orcid.org/0000-0002-6473-6434
mailto:sgh9@cornell.edu
https://orcid.org/0000-0003-1004-4034
mailto:sshasha2@ncsu.edu
https://orcid.org/0000-0001-8515-5877
https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1273
https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1273
https://github.com/INFORMSJoC/2022.0011
https://github.com/INFORMSJoC/2022.0011
http://dx.doi.org/10.5281/zenodo.7468744
https://orcid.org/0000-0002-6473-6434
https://orcid.org/0000-0003-1004-4034
https://orcid.org/0000-0001-8515-5877
https://pubsonline.informs.org/journal/ijoc

the latest incarnation permits additional uses. These in-
clude the following:

1. Sensitivity analysis of simulation models through
data farming;

2. Assisting with the tuning of input parameters of
SO solvers;

3. Educational uses, offering a set of models for stu-
dents to explore. Writing new problems or solvers for
the library could be a suitable final project for a gradu-
ate course in simulation or simulation optimization.

We highlight the following innovations in SimOpt:
•An object-oriented architecture in Python that enables

both open access and extensibility to new domains, for
example, data farming.

•An implementation of theMRG32k3a random num-
ber generator that supports streams, substreams, and
subsubstreams.

• A schema for controlling random numbers that al-
lows the use of common random numbers in a variety
of ways with almost no effort on the part of the user.

• An expanded suite of plotting tools for visualizing
experiment results.

• A bootstrapping approach to error estimation that
permits a broad range of analyses.

• A data-farming capability that allows one to test
how changes to parameters of simulation models or
simulation-optimization solvers affect their outputs.

•AGUI that increases ease of use.
The result of these innovations is a powerful plat-

form that we hope will become a standard medium for
the study of SO problems and solvers.

This paper focuses on the use of SimOpt, highlighting
those aspects of its design that are most important for a
range of use cases from a casual SO user to researchers
working on designing improved solvers. Eckman et al.
(2023) define and explain the rationale behind the diag-
nostic tools that are implemented in SimOpt. The
papers overlap only slightly: Section 3 summarizes the
metrics developed in Eckman et al. (2023). Otherwise,
the papers aremostly complementary.

Our work is partly inspired by the recent development
of PyMOSO (Cooper and Hunter 2020, 2021) for multi-
objective SO problems. Neither SimOpt nor PyMOSO
dominates the other in scope. Although PyMOSOhas the
ability toworkwith the single-objective SO problems that
are our focus, it is primarily intended for multiobjective
problems. Conversely, SimOpt latently supportsmultiob-
jective SO problems butwill require further development
before this capability is fully implemented. We believe
that many of the innovations we develop here will be of
interest to users of PyMOSO, for example, the use of sim-
ulation models that exist separately from simulation pro-
blems. In any case, we view both PyMOSO and SimOpt to
be important tools for the SO research community.

The remainder of this paper is organized as follows.
Section 2 defines single-objective SO problems and

delineates the classes of SO problems and solvers cur-
rently supported by SimOpt. Section 3 discusses the infra-
structure of SimOpt including how experiments may be
designed and evaluated. Section 4 explores several use
cases. Section 5 reviews the central aspects of the SimOpt
code, whichwill be helpful to thosewishing to contribute
problems or solvers. It also provides a deeper under-
standing of the code for those interested in advanced
experiments. Section 6 describes SimOpt’s implementa-
tion ofMRG32k3a and how it enables the use of common
randomnumbers in a variety of ways. Section 7 describes
in detail how one can access and work with SimOpt, and
Section 8 concludes. This paper is accompanied by a
GitHub repository (Eckman et al. 2022) containing the
source code for SimOpt.

2. SO Problems and Solvers
The prototypical SO problemwe consider is

min
x

f (x,w) � Ef (x,w, ξ)
s=t g(x,w) � Eg(x,w, ξ) ≤ 0

h(x,w) ≤ 0

x ∈ D(w):
In this formulation, the vector w consists of input para-
meters that are not decision variables but provide addi-
tional “settings” for the problem that the user may
wish to modify. The vector x of decision variables takes
values in a domain D(w) that could, for example,
restrict x to be integer-valued and could depend on w.
Collectively we refer to (x,w) as factors to align with the
design-of-experiments literature. Factors can be contin-
uous or integer-ordered scalars or vectors or even cate-
gorical in nature. In a single problem the factors w can
be viewed as fixed constants, but in, for example, data
farming, they could be varied. In the data-farming set-
ting, we refer to x and w as decision factors and noise
factors, respectively (Sanchez 2020).

The explicit dependence on the noise factors, w, is not
typical in the notation of SO problems. We adopt this
notation because SimOpt has been structured to allow
almost any parameter of a model to be varied. This
design choice is intended to make the code as flexible
as possible for user (re)specification. For example, this
allows the definition ofmultiple problems that all rely on
the same underlying simulation model and code. Vary-
ing the values of the factors w will usually lead to only
modest changes in the structure of the problembut could
lead to more substantial changes in properties like conti-
nuity, convexity, and smoothness. In addition, varyingw
can change both the feasible region and the optimal solu-
tion of the problem.

The random object ξ represents all random variables
required to generate a single replication. The expectation

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
2 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS

operator E potentially depends on x and w, in that
these factors may change the distribution of the ran-
dom object ξ, but that dependence is suppressed. The
functions f (·, · , ·) and g(·, · , ·) represent the simulation
logic used to generate the objective function and left-
hand side of any stochastic constraints, respectively, so
that f (·, · , ·) is real-valued and g(·, · , ·) is potentially
vector-valued. The potentially vector-valued function
h(·, ·) provides the left-hand side of any deterministic
constraints. Some constraints could be expressed either
through the function h or through the domain D(w). In
such cases, the choice of which to use is a matter of taste
and convenience.

This formulation is not completely general. It ex-
cludes, for example, objective functions associated with
quantiles or nonlinear functions of means. It includes,
for example, unconstrained problems where g and h
are vacuous and D is the domain of f (·,w)with w fixed,
problems with box constraints where D or h restricts
the decision variables to a hyper-rectangle alignedwith
the coordinate axes, and so forth. It includes problems
where all decision variables are continuous and pro-
blems where some or all decision variables take integer
values.When g is vacuous and h is not, we say the prob-
lem has deterministic constraints. If g is nonvacuous
thenwe say the problem has stochastic constraints.

Relative to the taxonomy of constraints developed in
Digabel and Wild (2015), we primarily assume Q**K

constraints, in that both g(·, ·) and h(·, ·) are Quantifiable
and Known, but depending on the problem setting one
may or may not be able to relax (the first *) these con-
straints. Within the structure of that taxonomy, the
h(·, ·) constraints are a priori constraints, whereas the
g(·, ·) constraints are Simulation constraints (explaining
the second *). The domain D(w) could permit devia-
tions from the Q**K classification, although we prefer
quantifiable, known constraints because we believe
them to bemore tractable.

We differentiate between the model that appears in
an SO problem and the problem itself. This allows us to
formulate multiple problems associated with a single
model. Moreover, models can be studied in isolation;
for instance, data farming can be employed to under-
stand how changes to the inputs of a simulation model
affect its outputs. Given that the code of a simulation
model is usually more complex than that of a problem,
this one-to-many relationship helps us rapidly expand
the collection of problems in SimOpt.

Example 1. The SimOpt model FacilitySize simu-
lates operations at a set of n facilities with each repli-
cation representing a day’s worth of operations. Each
facility has a capacity κi for i � 1, 2, : : : ,n and the
demand across all centers is distributed as a truncated
Gaussian with mean vector μ ∈Rn and variance-
covariance matrix Σ ∈Rn×n. If the demand at a facility

exceeds its capacity, the facility is said to be stocked
out. This model has four factors: n, κ :� (κ1,κ2, : : : ,κn),
μ, and Σ, demonstrating that factors can be scalars, vec-
tors, or matrices. A replication of the model returns three
responses: S, an indicator of whether any facility stocked
out; N, the number of facilities that stocked out; and U,
the total amount of unsatisfied demand.

The FacilitySize model can be used to formulate
several SO problems, for example,

min
κ∈Rk

+
c�κ such that Pr(N � 0) ≥ 1� ε and (1)

max
κ∈Rk

+
Pr(N � 0) such that c�κ ≤ b, (2)

where ci ∈R is the cost of installing a unit of capacity at
center i, ε ∈ (0, 1) is an allowable threshold for the prob-
ability of stocking out, and b ∈R is a total budget for
installation costs. The parameters c � (c1, c2, : : : , cn), ε,
and b are regarded as factors of the problems and can
be varied. In Problem (1), the objective is to minimize
the total installation costs subject to a stochastic con-
straint that the probability of not stocking out any-
where is sufficiently high. In Problem (2), the objective
is to minimize the probability of not stocking out at any
facility subject to a deterministic constraint on the total
cost of installing capacity at the facilities. Both pro-
blems designate the capacities as the decision variables,
that is, x � κ, while treating the other factors as fixed,
that is,w � {n,μ,Σ, c,b,ε}.

SimOpt does not include artificial problems that result
from adding noise to a deterministic test function such
as the Rosenbrock function. Such problems have serious
deficiencies that can arise, for example, when using com-
mon randomnumbers across different solutions. In such
cases, the entire deterministic function is shifted verti-
cally by a single random noise realization at all solutions
x, as has been noted elsewhere (Eckman et al. 2023).

In SimOpt, problems are solved by solvers, which are
implementations of SO algorithms. Like models and
problems, solvers have their own set of factors that can
be varied. These can be virtually anything, but repre-
sentative examples include (1) nothing; (2) coefficients
of a step-size sequence; (3) the number of replications
to take at each simulated solution; or (4) a categorical
variable indicating whether to use a first- or second-
order metamodel around the incumbent solution.

We classify solvers according to the kinds of pro-
blems they can tackle using the same terminology we
use to describe problems. Thus, for example, a solver
designed for continuous-variable problems cannot be
used on a problem with integer variables, and a solver
designed for unconstrained problems cannot be used
on a problem with stochastic constraints. Problems and
solvers in the library are categorized using a four-letter-
abbreviation coding system detailed in Table 1; for

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS 3

example, SBCG encodes single-objective, box-constrained,
continuous problemswith direct gradient estimates. Solver
classes represented in the library include random/direct
search,model-based search, simplex/pattern-based search,
and gradient-search. For a complete list of problems and
solvers, see https://simopt.readthedocs.io/en/latest.

At present, few SimOpt test problems return esti-
mates of the gradient of f (·, ·), so any gradient-based
solvers need to indirectly construct the gradient esti-
mates they require. However, we continue to develop
the list of problems in the library and add gradient esti-
mators where we can. An exciting potential research
direction is to use automatic differentiation to obtain
infinitesimal-perturbation-analysis gradient estimators
for all problems (Ford et al. 2022), although those esti-
mators will exhibit problem-specific degrees of bias
(Eckman andHenderson 2020).

SimOpt currently only supports fixed-budget solvers,
that is, solvers that are constrained to use up to a fixed
number of simulation replications over the entire course
of the search for optimal solutions. SimOpt is not designed
to directly support fixed-precision solvers, where the search
continues until a stopping condition is met so that the
expended budget is random. Perhaps themost prominent
class of these yet unsupported solvers are ranking-and-
selection algorithms that enumerate afinite list of potential
solutions and provide a statistical guarantee on the se-
lected system. Some solvers, that we call budget-specific sol-
vers, explicitly use knowledge of the overall budget of
simulation replications in setting key parameters (Nemir-
ovski et al. 2009), whereas budget-agnostic solvers do not.
Most SimOpt metrics are intended for budget-agnostic
solvers, although SimOpt provides additional terminal
plots to enable the comparison of budget-specific solvers
and budget-agnostic solvers (see Section 3).

Some solvers require nontrivial computing overhead
beyond that needed to generate simulation replications.
Such overhead does not appear in the metrics that
SimOpt produces, although the overall computing time
for eachmacroreplication is logged and can be accessed
(see Section 3).

Parallelization is not yet supported but is planned
through the parallel execution of macroreplications.
Solvers can exploit parallel computing, but the metrics
that SimOpt produces are most easily interpreted in the
context of a serial model of computation.

The metrics that SimOpt produces are not customized
in any way for SO problems with stochastic constraints,
although this is planned. Multiobjective SO problems
are not supported, but some preparations have been
made for future extensibility.

3. Solver Performance
From its inception, SimOpt has sought to answer the
question “Howdowe know if a solver is workingwell?”
SimOpt is designed to help both a researcher who might
appreciate testing a solver’s ability to rapidly and reliably
solve practical problems and a practitioner who would
primarily be interested in solving a particular problem of
interest. In this section, we describe how SimOpt runs an
SO solver on a problem and reports useful metrics and
plots for evaluating and comparing performance.

Unlikewithdeterministic-optimizationsolvers, theper-
formance of an SO solver on a given problem varies from
run to run due to the random error associated with esti-
mating the objective function or stochastic constraints,
as well as any intrinsic randomness of the solver, for
example, picking a random search direction. This nec-
essitates performing multiple runs of a solver on a prob-
lem, hereafter referred to as macroreplications. For a given
problem p and solver s, the solver’s performance on a par-
ticular macroreplication is assessed by fixing a problem-
specific simulation budget T—measured in simulation
replications—and tracking the solutions recommended
over time. In particular, the mth macroreplication gener-
ates a stochastic process {Xp,s

m (t) : 0 ≤ t ≤ 1}, where Xp,s
m (t)

is the solution recommended by Solver s on Problem
p after a fraction t ∈ [0, 1] of the budget has been ex-
pended.When there is no ambiguity, we suppress p and s
from the notation. The recommended solutions are then
re-evaluated in a postprocessing stage to obtain unbiased
objective function estimates and the results can be scaled
to obtain the solver’s relative progress toward optimality.
Effectively, SimOpt estimates a solver’s progress via two-
level simulation,with an outer level consisting ofmacrore-
plications and an inner level consisting of postreplications.
This experimental setup for a given problem-solver pair is
outlined here.

Step 1. RunM ≥ 1 independent macroreplications of
Solver s on Problem p to generate {Xm(t) : 0 ≤ t ≤ 1} for
m � 1, 2, : : : ,M.

Table 1. Abbreviations Used to Categorize Problems and Solvers to Recognize Their
Compatibility

Objective Constraint Variable
Direct gradient
observations

Single (S) Unconstrained (U) Discrete (D) Available (G)
Multiple (M) Box (B) Continuous (C) Not Available (N)

Deterministic (D) Mixed (M)
Stochastic (S)

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
4 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS

https://simopt.readthedocs.io/en/latest

Step 2. Take N independent postreplications of the
model at each distinct recommended solution in {Xm(t) :
0 ≤ t ≤ 1} for m � 1, 2, : : : ,M. The objective function value
associatedwith a recommended solutionXm(t) is estimated
by the sample average of theN postreplications, denoted as
fN(Xm(t)). (The left-hand sides of any stochastic constraints
can be estimated similarly as gN(Xm(t)).)

Step 3. Optionally, for each solution recommended
in macroreplication m, normalize its estimated objec-
tive function value using the (estimated) objective func-
tion values at an initial solution x0 and an optimal
solution x∗ for reference:

νm(t) � fN(Xm(t))� fL(x0)
fL(x∗)� fL(x0) :

The objective function values of x0 and x∗ are estimated
based on L postreplications, where typically L ≥N.
We call the normalized value νm(t) the estimated

progress at time t on macroreplication m and we call
νm(·) the estimated progress curve. A progress curve typ-
ically takes values between zero and one, although this
is not guaranteed due to sampling variability or other
causes. When a problem’s true optimal solution is
unknown, as is often the case, a known optimal value
f (x∗) or a lower (upper) bound on the optimal value for
minimization (maximization) objectives may be pro-
vided and used in place of fL(x∗). If these quantities are
not provided, SimOpt empirically identifies a proxy
optimal solution by using the recommended solution
with the best estimated objective function value based
on theN postreplications.

Estimates of many measures of solver performance
can be extracted from the estimated progress curves
and plotted. We summarize five types of comparative
plots introduced in Eckman et al. (2023) here and show
four examples in Figure 1. The first two plots in Figure 1
measure the performance of multiple solvers on a single

Figure 1. (Color online) Plots Produced by SimOpt for Comparing Solvers on One orMore Problems

Notes. (a) Mean progress curves. (b) Terminal progress violin plots. (c) Area-under-progress-curve scatter plots. (d) Solvability profiles.

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS 5

problem and the final two plots depict the performance
of multiple solvers onmultiple problems. SimOpt uses a
two-level bootstrapping procedure to obtain error esti-
mates for these metrics, as outlined in appendix B of
Eckman et al. (2023). Pointwise 95% bootstrap confi-
dence intervals are indicated in the plots with shading.

• Aggregated Progress Curves. The estimated progress
curves ν1(·),ν2(·), : : : ,νM(·) can be aggregated to pro-
duce a mean progress curve and a quantile progress
curve. These curves depict the solver’s average pro-
gress over time and how reliable this progress is,
respectively. Solvers for which the aggregated progress
curves approach zero more quickly are those that make
more rapid progress.

• Solvability Curves. One can specify a value α ∈ (0, 1)
that indicates the relative remaining optimality gap
required for a problem to be deemed “solved”. The cor-
responding crossing time of each estimated progress
curve νm(·) is referred to as the α-solve time. The empiri-
cal cumulative distribution function of the α-solve times
from multiple macroreplications is called a solvability
curve and shows how rapidly a solver makes sufficient
progress.

• Area-Under-Progress-Curve Scatter Plots. For each
problem, the sample mean and standard deviation of the
area under a solver’s estimated progress curves can be
plotted in a scatter plot using these summary statistics as
(x,y) coordinate pairs. Solvers whose point clouds are
concentrated in the lower-left corner of the scatter plot
are those that either find better solutions or exhibit faster
convergence with greater reliability.

• Solvability Profiles and Difference Profiles. The α-solve
times of a solver can also be aggregated across problems
to yield a solvability profile, which has close ties to data
profiles (Moré and Wild 2009). Solvers with solvability
profiles closer to 1 demonstrate better performance at
solving a larger fraction of the tested problems. Com-
parisons between a set of solvers and that of a bench-
mark solver s0 can be further highlighted by plotting the
difference of solvability profiles, called difference pro-
files (not shown). The values of a difference profile
range between �1 and 1 with positive values indicating
a solver outperforming the benchmark.

• Terminal Progress Comparative Violin Plots and Scatter
Plots. The progress of solvers once the budget T is
exhausted is of particular interest, partly to enable the
direct comparison of budget-specific and budget-agnostic
solvers. Violin plots, one per solver, depict the distribution
of the terminal progress ν(1), whereas the mean and stan-
dard deviation of ν(1) for each problem-solver pair can be
plotted in a scatter plot.

These metrics and plots have limitations that direct
our future endeavors for SimOpt. First, they are not
designed for problems with stochastic constraints, or at
least do not depict the (in)feasibility of recommended

solutions. Second, they are not designed for multiobjec-
tive SO problems, which have their own unique aspects
when it comes to measuring a solver’s performance.
Third, they do not show the computational effort a
solver requires beyond that needed to run simulation
replications, which can be considerable for some solvers.
Presently, we log the computation times for eachmacro-
replication of each problem-solver pair, which can be
analyzed manually; we do not provide diagnostic plots
for these computation times partly because they depend
so heavily on the computing platform that is used. Last,
the computational effort required to construct estimated
progress curves, and associated metrics, grows with the
number of solutions recommended by a solver. In these
cases, estimating the progress on a regular grid of times
can alleviate this burden while still conveying the gen-
eral performance of a solver; this alternative construc-
tion is not yet implemented.

4. Use Cases
The performancemetrics and plots discussed previously
provide a wealth of information on the performance of
solvers on problems. Here we discuss how that informa-
tion can be used in a variety of settings that encompass
both practitioners attempting to solve one or more pro-
blems and researchers attempting to develop solvers and
compare them.

1. How well can Problem p be solved? In practice, we
often seek a good solution to a given problem. The
experiment consists of the singleton problem set P �
{p} together with a collection of candidate solvers S.
Progress and solvability curves are both of interest, but
a challenge is that the optimal value, or a proxy thereof,
is likely unknown. In that event, unnormalized pro-
gress curves may be of primary interest and these are
easily produced in SimOpt by simply setting an option
in the call to generate the progress curves.

2. Is Solver s able to solve Problem p? Here a solver
developer is interested in whether Solver s can α-solve
Problem p for some given α. Because the goal here is
solver design rather than problem solution, an optimal
value or a proxy may be known. Accordingly, an
experiment with a singleton problem set P � {p} and a
singleton solver set S � {s} might be run to produce
progress and solvability curves.

3. Does Solver s solve Problem p faster or more reliably
than Solver s′? A solver developer may want to know
how their solver, s, compares with another benchmark
solver, s′, on a particular problem. We can run an ex-
periment with P � {p} and S � {s, s′}. Mean and me-
dian progress curves can provide the typical rate of
progress and other (than the median) quantile progress
curves can provide information about solver reliability.
Here s and s′ might be the same solver with different
factors, thereby facilitating the tuning of solvers, or two

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
6 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS

entirely different solvers. In this and the next two use
cases, the number of solvers being compared can be
more than two. For instance, if one wishes to explore
variants of the solver s, as expressed through choices of
solver factors v1,v2, : : : ,vr, say, then one would use the
solver set S � {s(v1), s(v2), : : : , s(vr)}.

4. Is Solver s more robust than Solver s’ in solving problems
of the form p? Many applications involve the repeated
solution of problems that are very similar. We can
explore which solvers are especially adept at solving a
class of problems by taking P � {p(w1),p(w2), : : : ,p(wr)},
where w1,w2, : : : ,wr are choices of factors. If we take
these factor settings to be the initial solution, then we can
explore the global convergence properties of solvers. If
we take these factor settings to reflect the size, noise-to-
signal ratio, or other specifics of Problem p, we can see
how the two solvers compare in solving this class of pro-
blems. Less consistency in a solver’s performance here
implies less robustness. Area-under-progress-curve scat-
ter plots, solvability profiles, and difference profiles are
all of interest.

5. Is Solver s better than Solver s′?When the user is inter-
ested in an overall assessment of one solver vs. another,
it would be appropriate to perform an experiment with
a comprehensive problem set P � {p1,p2, : : : ,pr} that
includes many problem instances encompassing a wide
range of structural properties and noisy behaviors. Alter-
natively, the user can choose P to contain only problems
that are hard to solve by current solvers and include an
existing high-functioning solver as a benchmark for dif-
ference profiles. Or a user might be interested in a com-
parison of only low (high) dimensional problems. This
use case, as well as Use Cases 3 and 4, can help a solver
developer test specific internal changes to an existing
solver. What it means for a solver to be “better” is subjec-
tive and dependent on the needs of the user; speed and
reliability are important and can be explored in the plots
and log files. If the number of problems in P is reason-
ably large, solvability and difference profiles will clarify
whether one solver is capable of solving a higher percent-
age of problems than the other. Area-under-progress-
curve scatter plots are also beneficial in showing on
which problem instances each solver performs poorly.

6. What choices of factors of Solver s work best on a prob-
lem or a set of problems? Similar to Use Case 3, a user
may want to explore the factors v of Solver s, looking
for the (parameterized) solver s(v) with the best perfor-
mance. For example, data farming (Sanchez 2020) can
be used to design a space-filling set of factor combina-
tions V � {v1,v2, : : : ,vr}. The output data from such an
experiment can then be used to form response surfaces
based on the various performance measures listed in
Section 3. A user might seek, for example, the setting of
the solver’s factors that minimizes some functional of
the area under the progress curves. In this way, one

might establish some rules of thumb for tuning a solver
to a particular problem or class of problems.

7. Can the relationship between the inputs and outputs of
a simulation model be understood? Here there is no opti-
mization problem to be solved. Rather, one wishes to
explore the effects that a given simulation model’s fac-
tors have on its responses. The necessary simulations
can be run in SimOpt; however, the statistical analysis
of the results needed to, for instance, generate a res-
ponse surface must be performed externally.

5. Code Design
Previous versions of SimOpt were coded inMATLAB—
a choice that was partially an artifact of how the library’s
first problems and solvers were coded. Our major rede-
sign of SimOpt presented an opportunity to revisit the
choice of programming language. Feedback from the
simulation community indicated that Python would be
an ideal choice for other researchers to use and contrib-
ute code. Python is an open-source programming lan-
guage that has arguably become the de facto choice for
scientific computing. Like MATLAB, Python supports
object-oriented programming—a central tenet of the re-
design. The decision to convert the SimOpt library to
Python was also influenced by the existence of another
SO library written in Python: PyMOSO (Cooper and
Hunter 2020). The PyMOSO library provides a Python
implementation of the MRG32k3a pseudorandom-number
generator (L’Ecuyer 1999, L’Ecuyer et al. 2002), which we
further adapted for our purposes (see Section 6.1).

We decided to rebuild SimOpt with an object-oriented
design after seeing a similar architecture in the PyMOSO
library. In libraries like these, specific problems or solvers
are naturally encoded as subclasses of more general
Problem and Solver classes. The overall object-oriented
design of SimOpt was developed by considering the
kinds of experiments we intended to support and identi-
fying the main entities and how they interact. There is a
base design that reflects SimOpt’s role as a library of pro-
blems and solvers with classes including Model, Prob-

lem, Solver, and Solution. Around this base design is
another layer aligned with SimOpt’s role as a testbed for
running experiments; classes at this level include Proble-
mSolver and ProblemsSolvers. Woven throughout the
design are pseudorandom-number generators that are
used for a variety of purposes. We overview the base
design and experimental layer in Sections 5.1 and 5.2,
respectively, and discuss pseudorandom-number gener-
ation in Section 6.

Remark 1. The object-oriented programming para-
digm is well suited for coding discrete-event simula-
tions, which feature entities interacting stochastically
over time. However, our discussion of object-oriented
design in this paper pertains to the architecture of

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS 7

SimOpt. Individual models in SimOpt, many of which
are discrete-event simulations, may be written as pro-
cedural or object-oriented programs.

5.1. Models, Problems, Solvers, and Solutions
The SimOpt Model object represents a simulation model,
that is, a multivalued function that takes deterministic
inputs (factors) and returns one or more stochastic out-
puts (responses). Stochastic outputs are produced be-
cause a Model is equipped with one or more mechanisms
for generating randomprimitives. A SimOpt Problem ob-
ject enfolds an underlying Model and specifies which
inputs of themodel are decision variables andwhich out-
puts appear in the objective or constraints, as described in
Section 2. These mappings are central to how we define
classes for solutions and solvers.

An instance of the Solution class is associated with a
vector of decision variables, x. When instantiating a
Solution object, a Problem object is also provided; thus,
the mappings of model factors to decision variables and
responses to objectives and constraints are impressed on
the Solution object. A Solution object is equippedwith
a set of random number generators to be used for simu-
lating replications of the model as specified by x (for
further detail, see Section 6). Each time a solution is sim-
ulated, its summary statistics are updated. These include
the sample mean and variance of the objective function
values and left-hand sides of any stochastic constraints,
as posed in Section 2. The individual observations of the
objective function (as well as those of any stochastic con-
straints’ left-hand sides and any available gradients) are
also recorded.

Remark 2. A Solution object has differing concepts of
feasibility and simulatability. Feasibility refers to whether
the solution satisfies the constraints of the optimization
problem, that is, whether it lies in the feasible region.
Simulatability refers to the ability to run a replication of
the model when the problem’s decision factors are set as
x. For example, if a decision variable reflects the variance
of a normal distribution and is negative, then a replica-
tion cannot be simulated. For a well-posed problem, all
feasible solutions will be simulatable, but the converse
need not hold. Both feasibility and simulatability can be
checked in the code for exception handling.

The Solver class represents algorithms designed to
solve SO problems. Solvers are classified in terms of the
number of objectives they can handle (one or multiple),
the hardest type of constraints they can handle (uncon-
strained, box, deterministic, or stochastic, in that order),
the types of decision variables they can handle (discrete,
continuous, or mixed), and whether they require gradi-
ent estimates. A Solver object is also equippedwith two
sets of pseudorandom-number generators: one for its
internal purposes and the other for simulating solutions.

The Solver class has a method called solve() that runs
one macroreplication of the solver on a given problem.
On a macroreplication, a solver explores solutions, run-
ning replications of solutions as it deems appropriate
until it has exhausted the problem’s specified budget.
Part of this process entails creating new instances of the
Solution class when the solver visits solutions that have
yet to be simulated.

To define a particular model, problem, or solver in
SimOpt, one creates a subclass of the corresponding
parent class (Model, Problem, or Solver), thereby in-
heriting the common attributes andmethods.

5.2. Experiments with Multiple Problems
and Solvers

Above the library of models, problems, and solvers,
there is a level to the architecture that supports experi-
ments that entail running multiple macroreplications of
one or more solvers on one or more problems. A pairing
of one solver with one problem is represented by the
ProblemSolver class. A specified number of macrorepli-
cations are run and their results postprocessed as des-
cribed in Section 3. Furthermore, one can postnormalize
results from ProblemSolverobjects corresponding tomul-
tiple solvers run on the same problem. The specifics of the
postprocessing and postnormalization stages, namely the
number of postreplications and the use of CRN, are re-
corded to the ProblemSolver object for future reference
when bootstrapping. After postnormalization, the results
can be plotted.

Multiple ProblemSolver objects can be bound to-
gether using the ProblemsSolvers class. An object of
this class is defined by a list of problems and a list of sol-
vers and consists of the ProblemSolver objects formed
by taking all pairings of the problems and solvers. The
ProblemsSolvers class facilitates running a large-scale
experiment to compare the performances of solvers on a
set of problems. The ProblemSolver objects that com-
prise a ProblemsSolvers object can be collectively post-
replicated and postnormalized and their results plotted.

6. Pseudorandom-Number Design
Pseudorandom numbers pervade the design of SimOpt:
Simulation models use random primitives within a rep-
lication, solvers may be inherently stochastic, and boot-
strapping is used to estimate errors for performance
metrics. We present a schema that controls how random
numbers are used throughout the testbed to run and
postprocess experiments on multiple problems and sol-
vers. This design enables the user to activate common
random numbers (CRN) at various levels. For back-
ground on CRN, see chapter 11 of Law (2015), and for
insight into the value of streams and substreams, see
Kelton (2006).

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
8 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS

6.1. Implementation of MRG32k3a
SimOpt uses theMRG32k3a pseudorandom-number gen-
erator of L’Ecuyer (1999) and L’Ecuyer et al. (2002). The
MRG32k3a generator has been shown to pass rigorous
statistical tests, has a long period of approximately 2191,
and facilitates random number streams. In particular,
advancing to the start of an arbitrary stream is computa-
tionally inexpensive. Our choice of generator is partly
influenced by the Python implementation of MRG32k3a
found in PyMOSO (Cooper and Hunter 2020), which
allows the user to track streams and substreams. Given
the many uses of random numbers in SimOpt, we extend
this implementation to permit a third (lower) level of con-
trol: subsubstreams. In our implementation, the period is
split into approximately 250 streams of length 2141, each
containing 247 substreams of length 294, each containing
247 subsubstreams of length 247. Our implementation is
separately packaged for use outside of SimOpt and can be
downloaded at https://pypi.org/project/mrg32k3a or in-
stalled from the terminal using the command pip install

mrg32k3a.
Where randomnumbers areneeded, SimOpt instantiates

an MRG32k3a generator—an object of class MRG32k3a—
and seeds it at the start of a specified stream-substream-
subsubstream triplet that we denote here by (s, ss, sss) for
Subsubstream sss of Substream ss of Stream s. (In this paper
we index starting from one, but in Python, indexing starts
at zero.) By creating multiple MRG32k3a objects with dif-
ferent seeds, we control how random numbers are gener-
ated. The schema is repeated for each problem-solver pair,
that is, all ProblemSolver objects work with the same
universe of random number streams, substreams, and sub-
substreams, defined with respect to the same reference
seed. The rationale for this choice is discussed in Section 6.2.

6.2. Schema for Running Experiments
We dedicateM + 1 streams to run every experiment of a
given solver on a given problem. One stream is reserved
for overhead (signified by “O”), namely, the solver’s
internal randomness; future extensibility will allow for
random initial solutions, random restart solutions, and
random problem instances. Apart from the overhead
stream, different streams are used for each of the M
macroreplications.Within each of these streams, different
substreams are used for the model’s sources of random-
ness, and different subsubstreams are used for model

replications. Thus, the random-number schema for run-
ning multiple macroreplications is (s, ss, sss) � (m, i, r),
where r is the replication number of the solution being
visited by the solver (during the optimization) and i �
1, 2, : : : , I is the index of the source of randomness in the
model. The term “source of randomness” refers to dis-
tinct needs for uniform random numbers in a model. For
example, a simple single-server queueing model might
designate two sources of randomness: one that generates
interarrival times and another that generates service
times. (For more discussion on implementing sources of
randomness, see Kelton 2006.) In this queueing example,
I � 2 and (1, 1, 10) and (1, 2, 10) denote the sequences of
random numbers used to generate the arrival times and
service times, respectively, for the 10th replication of a
given solution visited on thefirstmacroreplication.

SimOpt’s design allows the user to flexibly control
how random numbers are used according to their pre-
ferences. In particular, the user can switch CRN on or
off at various levels. We proceed to discuss these levels,
working our way up from the lowest level of synchro-
nization to the highest. Table 2 summarizes the differ-
ent levels at which CRN are or can be activated, along
with the default settings.

Remark 3. At what is perhaps the lowest level, repli-
cations of a given simulation model return indepen-
dent and identically distributed outputs. Specifically,
after simulating a replication, all MRG32k3a objects
used by the simulation model are advanced to the
start of the next subsubstream. There is currently no
support for variance-reduction techniques that induce
dependent outputs across replications, for example,
antithetic variates and stratified sampling.

6.2.1. CRN Across Solutions. The most prevalent use
of CRN is synchronizing the random primitives used by
a simulation model when run at different solutions.
SimOpt supports this variance-reduction technique to a
high degree. Eachmodel specifies the number of sources
of randomness needed to run a single replication. Ran-
dom inputs for a given replication index are then syn-
chronized across solutions using copies of the same
MRG32k3a object, primed to start at the beginning of the
subsubstream with the corresponding index. This form
of CRN can help a solver determine the correct ordering

Table 2. Summary of CRN Management and User Control

Stage Form of CRN Default Controllable

Running (optimization) Across solutions � �

Across problem-solver pairs �

Postprocessing/bootstrapping (evaluation) Across solutions � �

Across macroreplications �

Between x0 and x∗ � �

Across problem-solver pairs �

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS 9

https://pypi.org/project/mrg32k3a

of performances of the solutions it simulates on a given
macroreplication and thus better identify an optimal
solution; if disabled, the solver obtains independent out-
puts across solutions.

6.2.2. CRN Across Solvers on One Problem. Consider
running two solvers on the same problem. The effect of
CRN across the two solvers is most pronounced when
the solvers also use CRN across solutions. In this case, if
the solvers ever simulate the same solution, they observe
the same sequence of outputs. Thus, solvers using a
sample-average approximation effectively optimize the
same sample-average functions on any givenmacrorepli-
cation. This form of CRN also synchronizes the random
numbers used by the solver for its internal purposes,
such as picking random directions and breaking ties.
This synchronization has limited upside for solvers that
behave very differently. Still, for different versions of the
same solver, it could lead to a variance reduction in the
difference between their performances. This form of
CRN also influences how the performances of solvers are
compared in difference profiles and othermetrics.

6.2.3. CRN Across Problem-Solver Pairs. We can take
a broader view of the previous form of CRN by allowing
the problem to vary as well. As previously mentioned,
all problem-solver pairs work from the same universe of
random numbers and the same reference seed. In other
words, the same (s, ss, sss) schema is implemented when
running experiments for any problem-solver pair. For
pairings that feature different problems and different sol-
vers, this form of CRN should neither harm nor benefit a
comparative analysis. We implement this form of CRN
for convenience since the experimental results are easily
reproducible by using Stream 1 for Macroreplication 1,
Stream 2 for Macroreplication 2, and so on, for all
problem-solver pairs. Were distinct streams used for dif-
ferent problem-solver pairs, the order in which we
experiment on the pairs would influence the results.

6.3. Schema for Postprocessing Experiments
Postprocessing entails re-evaluating the collection of
recommended solutions returned by each macroreplica-
tion of each problem-solver pair. A dedicated stream for
postprocessing, signified by “P,” is used for generating
random numbers within the model when simulating
postreplications—the solver is not involved. As a conse-
quence of working with a single stream, the substream
level must now accommodate indexing over bothmacro-
replications and sources of randomness, for example,
postprocessing 50 macroreplications and five sources of
randomness requires 250 substreams. Subsubstreams are
still used for distinct replications, in this case, postreplica-
tions. Hence, the random-number schema used in the
postprocessing stage is (s, ss, sss) � (P, I × (m� 1) + i,n),
where n is the postreplication number. For example, in

the simple queueing model, (P,3, 1) and (P,4, 1) repre-
sent the sequence of random numbers used for the arri-
vals and service times, respectively, in the postprocessing
of the solutions on the secondmacroreplication.

6.3.1. CRN Across Recommended Solutions on a Given
Macroreplication. The same random numbers are used
to take postreplications at each solution recommended
by a solver on a given macroreplication, which helps in
ranking the performance of recommended solutions.

6.3.2. CRN Across Macroreplications. Different sub-
streams are used for the set of postreplications at solu-
tions recommended on different macroreplications.We
do not advise using CRN across macroreplications here
because the results from different macroreplications
are combined in some of the summary measures that
SimOpt computes; dependence across macroreplica-
tions would inflate the variance of estimators of many
of those performancemeasures.

6.3.3. CRN Between Postreplications at x0 and x∗. A
postnormalization step involves taking a fixed number
of postreplications at the initial solution x0 and a proxy
optimal solution x∗. CRN is used to take postreplica-
tions at these solutions; this helps to correctly order
their performances.

6.3.4. CRN Across Problem-Solver Pairs. As in the
schema for running experiments, all problem-solver
pairs are postprocessed using the same set of random
numbers. This again is for convenience, not variance
reduction, because the postprocessing results are easily
reproducible under this setup.

When producing plots, a bootstrapping procedure is
optionally run to estimate the error associated with the
progress curves and other metrics. For a given problem-
solver pair and a user-specified number of bootstraps,
the bootstrapping procedure entails resampling with
replacement from the outputs of the postreplications
from different solutions recommended on different ma-
croreplications. These resampled outputs are then used
to construct bootstrapped progress curves. When re-
sampling, CRN is used exactly as implemented in the
postprocessing stage, but the random numbers come
from yet another dedicated stream, signified by “B.”
The default random-number schema used in bootstrap-
ping is (s, ss, sss) � (B,b, j), where b is the index of the
bootstrap instance, and j denotes the distinct subsub-
streams used to resample macroreplication and postre-
plication indexes. Further details are provided in the
library’s documentation.

Remark 4. By meticulously accounting for which str-
eams, substreams, and subsubstreams are used for
different purposes, it is possible to instantiate multiple

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
10 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS

MRG32k3a objects—initialized at the designated seeds—
and then dispatch them to a set of processors running
macroreplications (or problem-solver pairs) in parallel.
This degree of parallelization is not yet implemented.

7. Deployment
This section discusses howusers can access and interact
with SimOpt.

7.1 Access
SimOpt is hosted in a GitHub repository (Eckman et al.
2021). The master branch contains the Python version
discussed in this paper; a separate branch contains the
deprecated MATLAB code. Although SimOpt’s transi-
tion to GitHubwas part of a previous redesign described
in Eckman et al. (2019), it is worth reiterating the advan-
tages this offers. Automated version control allows users
to access previous versions of the code and to indicate
which version they used by referencing the repository’s
commit hex code, for example, commit 86cd5fdbf610f6c
d9b20564d974a734a29e7bfa9. Research experiments car-
ried out in SimOpt are thus easily reproduced. GitHub
also provides a more streamlined workflow for develop-
ing the library and troubleshooting issues with external
contributions through the pull-request feature.

The preferredway for users to interact with SimOpt is
to fork the GitHub repository. Forking creates a copy of
the repository on the user’s personal GitHub account
that they can then use for running experiments. Any
branching or commits on the forked repository will not
directly affect the main repository. If the user wishes for
their changes to be incorporated into the main reposi-
tory, asmight arise if theywere to fix a bug or to contrib-
ute a new model, problem, or solver, they can initiate a
pull request. The pull request notifies the development
team of the requested changes, which are then reviewed
before being merged into the main repository. After
forking the repository, users should clone it to their per-
sonal computer and open the root directory within their
preferred integrated development environment.

Remark 5. This setup requires users to have a GitHub
account, which can be obtained free of charge. Many
researchers already use GitHub repositories to main-
tain source code for experiments featured in their
published work.

SimOpt is also available as a package named simoptlib

at https://pypi.org/project/simoptlib and can be installed
from the terminal using the command pip install

simoptlib. (The mrg32k3a package will be automatically
installed when installing simoptlib.) Users who take this
approach can then directly import models, problems, and
solvers from the library within the Python environment,
for example, from simopt.models.cntnv import CntNV

imports the class for the continuous newsvendor model.

This option may be more appealing for educational pur-
poses, where users wish to experiment with the library,
but not contribute.

Users who have either forked the repository or in-
stalled the simoptlib package can then conduct experi-
ments by running scripts from the command line or
using the graphical user interface (GUI).

7.2. Scripts
The module experiment_base.py contains high-level
functions for running and postprocessing SO experi-
ments and plotting the results. Likewise, the module
data_farming_base.py defines functions and classes
for data-farming experiments that involve varying fac-
tors of the models. Although users can read the docu-
mentation for these functions and directly call them
from within the Python environment, the demo folder
in the GitHub repository contains a handful of Python
scripts that interact with the source code at different
levels. Bymodifying a few lines of code in these files, as
directed in the comments, users can specify the model,
problem and solver they wish to study and override
the default values of any factors. These scripts provide
a mechanism for testing without invoking higher-level
wrappers. (Users who have installed the simoptlib

package may download the scripts from the repository
andmodify them as needed.)

• demo_model.py: Runmultiple replications of a sim-
ulationmodel and report its responses.

• demo_problem.py: Run multiple replications of a
given solution for an SO problem and report its objec-
tive function values, gradients (if available), and left-
hand sides of stochastic constraints.

• demo_problem_solver.py: Run multiple macrore-
plications of a solver on a problem, save the outputs to
a .pickle file in the experiments/outputs folder, save a
log .txt file in the experiments/logs folder, and save
plots of the results to .png files in the experiments/

plots folder.
• demo_problems_solvers.py: Run multiple macro-

replications of multiple solvers on multiple problems
and save the results.

• demo_data_farming_model.py: Create a design
over model factors, run multiple replications at each
design point, and save the results to a comma sepa-
rated value (.csv) file in the data_farming_experi-

ments folder.
Another script called demo_san-sscont-ironore-

cont_experiment.py demonstrates how experiments
with multiple solvers and multiple problems were run
to produce the plots in Figure 1. These experiments
took about two hours to run on a standard laptop.

The functions that run data-farming experiments call
Ruby functions to produce a design over the factors, for
example, a nearly orthogonal Latin hypercube (NOLH)
design. For this code to run properly, the usermust first

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS 11

https://pypi.org/project/simoptlib

install a version of Ruby on their computer that can be
executed from the command line and additionally
install the datafarming gem using a command like gem
install datafarming. A data-farming experiment pro-
duces a table showing the model factors describing
each design point and the associated observed res-
ponses from each replication. These outputs are saved
in a .csv file, which can be imported into the user’s pre-
ferred statistical software package for further analysis.

7.3. GUI
SimOpt has a GUI that aids the user in running SO
experiments—a GUI for data farming is under develop-
ment. The GUI is opened by executing the command
python3 -m simopt.GUI from the terminal, where the
syntax python3may vary from system to system. If clon-
ing the repository, the previous command should be
run after navigating to the root directory. A README
file on the GitHub repository provides a step-by-step
user guide for all GUI activities including the following:

1. Adding/loading problem-solver pairs or groups,
2. Running/postprocessing problem-solver pairs or

groups,
3. Postnormalizing problem-solver pairs that share

the same problem, and
4. Producing plots of problem-solver pairs and groups

with customizable settings.
Figure 2 shows the main form in which all activities

are initiated. New problem-solver pairs can be added

by choosing the problem and solver, with the option of
modifying any of their factors, instance names or num-
ber of macroreplications. The “Add Problem-Solver
Pair” button adds the pair to a list under “Queue of
Problem-Solver Pairs.” One can also load a problem-
solver pair previously saved in a .pickle file. Alterna-
tively, several problem-solver pairs can be grouped
together either using the “Create a Problem-Solver
Group” button and selecting compatible problems and
solvers (with their default factors) or by first creating
and selecting several problem-solver pairs (with their
customized factors) before pushing “Create a Problem-
Solver Group from Selected.” This approach completes
the cross design of all problems and solvers in the
selected pairs.

Once a problem-solver group is created, it appears in the
“Queue of Problem-Solver Groups” tab. Pairs and groups
can be viewed and edited before pressing the “Run” or
“Post-Process” buttons. Running a problem-solver pair
produces macroreplications and thus sequences of recom-
mended solutions. Postprocessing the solutions yields the
estimated objective function values at each solution using
the default or user-modified CRN settings. All the postpro-
cessed problem-solver pairs appear under the tab “Post-
Normalize by Problem.” One can select multiple problem-
solver pairs, as long as they share the same problem, and
press the “Post-Normalize Selected” button. One can op-
tionally modify the reference solution and the number of
postreplications for these solutions. For problem-solver

Figure 2. Main Form in the SimOpt GUI

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
12 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS

groups, the “Post-Process and Post-Normalize” button
performs both procedures for each pair in the groupwith
one click, using the user-specified number of macrorepli-
cations for all pairs. After completing postnormalization
for either problem-solver pairs or problem-solver groups,
the user can generate plots (Figure 3). One can select post-
normalized problems and solvers and the plots of inter-
est, with the option of changing plot parameters and
error-estimation parameters. Pressing the “Add” button
generates and saves the new plot and lists it under
“Problem-Solver Pairs to Plots.” One can view each plot
individually or all in one page through theGUI.

7.4. Contributing Code
Users can contribute models, problems, and solvers to
the library. To help ensure that contributed code prop-
erly interfaces with the current architecture, we recom-
mend that users copy and modify code from similar
models, problems, and solvers already present in the
library. The demo scripts mentioned in Section 7.2 can
also be used to help develop and debug contributed
code.

For additional support, SimOpt uses automatic docu-
mentation to provide up-to-date reference materials for
the Python source code. This documentation is hosted
at https://simopt.readthedocs.io/en/latest and updates
with each pushed commit to the master branch of the
library. Read the Docs (https://readthedocs.org) gener-
ates restructured text (.rst) files by reading the docstrings
in the commented code. Models and solvers also have

dedicated .rst files that provide detailed descriptions
and links to external references.

8. Conclusion
We present the latest version of the SimOpt testbed for
SO and data-farming experiments. The transition to
Python and top-to-bottom redesign are big steps toward
making SimOpt the valuable resource for researchers
and educators we aspire to provide. As with any active
open-source project, SimOpt will continue to evolve as
new experimental capabilities are added and commu-
nity members contribute. This paper lays out formative
principles of SimOpt’s design that we expect will persist
for years to come. Specifically, the versatility achieved
through ascribing factors of models, problems, and sol-
vers and the careful control of pseudorandom numbers
sets SimOpt apart from conventional code implementa-
tions of SO solvers and problems and past versions of
SimOpt.

Our near-term objective is to quickly populate the
library with many problems and solvers that reflect the
diversity of the SO field. We greatly welcome contribu-
tions; these can be submitted through pull requests to
the GitHub repository or correspondence with the
development team. Python implementations of models
and solvers are more easily integrated with the exist-
ing architecture, but we will explore opportunities to
“wrap”models and solvers written in other languages.
After the library has reached a critical mass of pro-
blems, one could imagine holding a competition to

Figure 3. (Color online) Plotting Form in the SimOpt GUI

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS 13

https://simopt.readthedocs.io/en/latest
https://readthedocs.org

determine which solvers have best-in-class finite-time
performance.

The next phase of SimOpt’s development will aim to
further enhance its capabilities. Under the current design,
problem-solver pairings (and macroreplications thereof)
are readily parallelized, but we have not yet enabled
experiments to be run in such a fashion. We plan to
develop the infrastructure for generating random prob-
lem instances by randomly generating model and prob-
lem factors from specified distributions. We are also
working to facilitate parameter tuning and sensitivity
analysis by allowing for more elaborate data-farming
designs formed over model, problem, and solver factors.
Last, we intend to support the computation of stochas-
tic gradients of performance measures, when available,
either via analytical derivation (e.g., infinitesimal pertur-
bation analysis (IPA) Glasserman 1991) or automatic dif-
ferentiation software (Ford et al. 2022).

Acknowledgments
The authors thank the associate editor and reviewers for feed-
back that helped improve the paper and software; Kyle Beck,
Nolan Berry, Noah Bigler, Nicole Colberg, Rina Davila, Lili-
beth Escamilla, Matthew Ford, Yunsoo Ha, Zack Horton, Pra-
nav Jain, Natalia Londono, Suraj Ponnaganti, Patrick Rangel,
Anita Shi, Joe Ye, Eva Zhang, Mark Zhang, and Jody Zhu for
help with coding; Susan Sanchez for a suggestion to incor-
porate data farming into the SimOpt redesign; and Pierre
L’Ecuyer for advice on randomnumbermanagement.

References
Cooper K,Hunter SR (2020) PyMOSO: Software formultiobjective simu-

lation optimization with R-PERLE and R-MinRLE. INFORMS J.
Comput. 32(4):1101–1108.

Cooper K, Hunter SR (2021) PyMOSO. AccessedMarch 3, 2021, https://
github.com/pymoso/PyMOSO.

Digabel SL, Wild SM (2015) A taxonomy of constraints in simulation-
based optimization. Preprint, submitted May 28, https://arxiv.org/
abs/1505.07881.

Dong N, Eckman DJ, Zhao X, Poloczek M, Henderson SG (2017) Em-
pirically comparing the finite-time performance of simulation-
optimization algorithms. ChanWKV, D’Ambrogio A, Zacharewicz
G, Mustafee N, Wainer G, Page E, eds. Proc. Winter Simulation Conf.
(IEEE, Piscataway,NJ), 2206–2217.

Eckman DJ, Henderson SG (2020) Biased gradient estimators in sim-
ulation optimization. Bae KH, Feng B, Kim S, Lazarova-Molnar
S, Zheng Z, Roeder T, Thiesing R, eds. Proc. Winter Simulation
Conf. (IEEE, Piscataway NJ), 2935–2946.

Eckman DJ, Henderson SG, Pasupathy R (2019) Redesigning a
testbed of simulation-optimization problems and solvers for
experimental comparisons. Mustafee N, Bae KHG, Lazarova-
Molnar S, Rabe M, Szabo C, Haas P, Son YJ, eds. Proc. Winter
Simulation Conf. (IEEE, Piscataway, NJ), 3457–3467.

Eckman DJ, Henderson SG, Shashaani S (2022) SimOpt: A testbed for
simulation-optimization experiments v2022.0011.AccessedDecem-
ber 21, 2022, https://github.com/INFORMSJoC/2022.0011.

Eckman DJ, Henderson SG, Shashaani S (2023) Diagnostic tools for
evaluating and comparing simulation-optimization algorithms.
Articles in Advance at INFORMS. J. Comput., ePub ahead of print
January 5, https://pubsonline.informs.org/doi/10.1287/ijoc.
2022.1261.

Eckman DJ, Henderson SG, Shashaani S, Pasupathy R (2021)
SimOpt. Accessed March 3, 2021, https://github.com/simopt-
admin/simopt.

Ford MT, Eckman DJ, Henderson SG (2022) Automatic differentia-
tion for gradient estimators in simulation. Feng B, Pedrielli G,
Peng Y, Shashaani S, Song E, Corlu CG, Lee LH, Chew EP,
Roeder T, Lendermann P, eds. Proc. Winter Simulation Confer-
ence (IEEE, Piscataway NJ), 3134–3145.

GlassermanP (1991)Gradient EstimationVia PerturbationAnalysis (Kluwer).
Kelton WD (2006) Implementing representations of uncertainty.

Henderson SG, Nelson BL, eds. Simulation, vol. 13 of Hand-
books in Operations Research and Management Science (Else-
vier, Amsterdam), 181–191.

Law AM (2015) Simulation Modeling and Analysis, 5th ed. (McGraw-
Hill, New York).

L’Ecuyer P (1999) Good parameters and implementations for com-
bined multiple recursive random number generators. Oper. Res.
47(1):159–164.

L’Ecuyer P, Simard R, Chen EJ, Kelton WD (2002) An object-
oriented random number package with many long streams and
substreams. Oper. Res. 50(6):1073–1075.

Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization
algorithms. SIAM J. Optim. 20(1):172–191.

Nemirovski A, Juditsky A, Lan G, Shapiro A (2009) Robust stochas-
tic approximation approach to stochastic programming. SIAM
J. Optim. 19(4):1574–1609.

Pasupathy R, Henderson SG (2006) A testbed of simulation-
optimization problems. Perrone LF, Wieland FP, Liu J, Lawson
BG, Nicol DM, Fujimoto RM, eds. Proc. Winter Simulation Conf.
(IEEE, Piscataway, NJ), 255–263.

Sanchez SM (2020) Data farming:Methods for the present, opportunities
for the future.ACMTrans.Modeling Comput. Simulation 22:1–30.

Eckman, Henderson, and Shashaani: SimOpt: A Testbed for Simulation Optimization
14 INFORMS Journal on Computing, Articles in Advance, pp. 1–14, © 2023 INFORMS

https://github.com/pymoso/PyMOSO
https://github.com/pymoso/PyMOSO
https://arxiv.org/abs/
https://arxiv.org/abs/
http://1505.07881
https://github.com/INFORMSJoC/2022.0011
https://pubsonline.informs.org/doi/10.1287/ijoc.2022.1261
https://pubsonline.informs.org/doi/10.1287/ijoc.2022.1261
https://github.com/simopt-admin/simopt
https://github.com/simopt-admin/simopt

	SimOpt: A Testbed for Simulation-Optimization Experiments
	Introduction and Motivation
	SO Problems and Solvers
	Solver Performance
	Use Cases
	Code Design
	Pseudorandom-Number Design
	Deployment
	Conclusion

