NC STATE Wake Effect Calibration in Wind Power Systems with
UNIVERSITY Adaptive Sampling based Optimization

is EDWARD P HTTS DEPARTMENT OF Pranav Jain, Dr. Sara Shashaani, North Carolina State University,

INDUSTRIAL AND SYSTEMS ENGINEERING

®

Dr. Eunshin Byon, University of Michigan, Ann Arbor

Table 1: Summary of the numerical examples used for comparison

We use Trust-region as our search
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Table 2: The proposed algorithm (S-ASTRODF) finds better calibrated parameter
o . values than Bayesian calibration and its original counterpart (ASTRODF).
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- Sample size of each stratum is determined by the ratio of population R () Medlag: Quaritile Diots.
Suppose we have < x;,v; > j = 1,...,n data points, where x; is wind _ _ _ Fig 6: Convergence curves from 20 microreplication show that the proposed
PP 4 and v. is th ] d] . h P bi W / K in that stratum and the variance of response in that stratum. algorithm (S-ASTRODF) outperforms the original algorithm (ASTRODF), that lacks
speed and yy Is the generated power irom the turbines. yve see ot = "3 " the stratification, for wake effect calibration in a wind farm case study.
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Fig 4: Stratified sampling using/a one-dimensional variable.
- Compared to Bayesian approach, trust-region approach can capture

v =12,...,V Experiments the local variations better, leading to effective parameter calibration.
Stochastic Optimization to Find 6,

The loss function is the mean absolute error of prediction residuals.
Estimated objective at a solution 8 with the sample set S(8) is

Stratified Adaptive Sampling _
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1S(9)] z f(y (H’XJ)’YJ)' . P i B If Stopping rule not satisfied, - Combination of adaptive and stratified sampling gives better
solutions with lower variability, i.e., higher reliability.

Modeling set N;(6;) = N;(6;) + 1 w.p. w;.
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Optimization is derivative-free with the main assumptions:
- F(H, 5(9)) —— f(8) almost surely for all 6.

F(6,5(6k))
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