NC STATE UNIVERSITY

performance

$$F(\theta, \mathcal{S}(\theta)) = \frac{1}{|\mathcal{S}(\theta)|} \sum_{\langle x_j, y_j \rangle \in \mathcal{S}(\theta)} \ell(y^c(\theta; x_j), y_j)$$

Wake Effect Calibration in Wind Power Systems with Adaptive Sampling based Optimization

Pranav Jain, Dr. Sara Shashaani, North Carolina State University,

Dr. Eunshin Byon, University of Michigan, Ann Arbor

	Input	Computer Model	Noise
Example 1	1-D	Perfect	Homogeneous
Example 2	1-D	Imperfect	Homogeneous
Example 3	1-D	Perfect	Heterogeneous
Example 4	2-D	Perfect	Homogeneous

	Input	Computer Model	Noise
Example 1	1-D	Perfect	Homogeneous
Example 2	1-D	Imperfect	Homogeneous
Example 3	1-D	Perfect	Heterogeneous
Example 4	2-D	Perfect	Homogeneous

Table 2: The proposed algorithm (S-ASTRODF) finds better calibrated parameter values than Bayesian calibration and its original counterpart (ASTRODF).

Method	Example 1	Example 2	Example 3	Example 4
Bayesian-1	-1.42	-0.26	1.93	0.14
Bayesian-2	2.95	1.08	2.87	0.23
ASTRODF	-1.08	-0.04	1.99	0.11
S-ASTRODF	-1.01	-0.18	2.03	0.11
True value	-1.00	N/A	2.00	0.10

(b) Median-Quantile plots. (a) Mean-CI plots. Fig 6: Convergence curves from 20 microreplication show that the proposed algorithm (S-ASTRODF) outperforms the original algorithm (ASTRODF), that lacks the stratification, for wake effect calibration in a wind farm case study.

Conclusions

Sara Shashaani, Fatemeh S Hashemi, and Raghu Pasupathy. ASTRO-DF: A class of adaptive sampling trust-region algorithms for derivative-free stochastic optimization. SIAM Journal on Optimization, 28(4): 3145–3176, 2018.

Experimental Results

Table 1: Summary of the numerical examples used for comparison

- Compared to Bayesian approach, trust-region approach can capture the local variations better, leading to effective parameter calibration.

Combination of adaptive and stratified sampling gives better solutions with **lower variability**, i.e., higher reliability.

References

Bingjie Liu, Matthew Plumlee, and Eunshin Byon. Data-driven parameter calibration in wake models. In 2018 Wind Energy Symposium, 2018.