Traffic Signal Control Simulation and Optimization

Yunsoo Ha and Sara Shashaani
Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University

Goal

- We want to add multiple different problems in SimOpt library so that we can compare the solver's performance effectively and accurately

Modelling

- Inspired by Manhattan's grid with a few long two-way vertical arterial roads and a number of one-way crossing streets with alternating directions
- Generate origin and destination pairs and time of arrival for each car entering the system based on the arrival rate in each street and randomly generated probabilities for each destination
- Generate each car's route to their destination by Floyd-Warshall algorithm [Objective function $=$ average cycle time]

$$
\min _{X} F\left(X ; \xi \sim \exp \left(\lambda_{i}, i=1,4,5 \ldots, 8\right), \ell:\right. \text { length of red and green lights) }
$$

Origins and destinations Queues behind red lights Intersections

2×2 grid network example

Characteristic of Traffic signal control problem

- Sample path is non-smooth, non-convex function. In case of two intersections problem, the sample-path objective function shows two characteristics.

1. periodic behavior;
2. zig-zagging decline but sharp increase after reaching minimum value [2 intersections, 1 offsets]

How we can make multiple different problems with the traffic signal control problem?

- Easily generate stochastic oracles of traffic lights with high dimensions by increasing the number of intersections
- Span a variety of functional shapes and behaviors by varying the parameters that include the arrival, probabilities of choosing destinations, and the lengths of lights.
[4 intersections, 1 offset]

[4 intersections, 1 offset, time varying arrivals]

[4 intersections, 2 offsets]

Result

1. Model-based method

- ASTRO-DF
- STRONG

2. Direct-search method

- NELDMD

3. Gradient-based method - SPSA

Mean-Cl plot for 10 intersections, 9 offsets

Thanks to Shane Henderson (Cornell University) and David Eckman (Northwestern University) for their comments and suggestions.

