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Searching in a dataset for the “best” among many features is worthwhile for better and more timely predictions, and interpretability of the 
underlying system. Current automated methods depend on learning algorithm or produce weak and highly variable feature subsets. 

A simulation optimization method with bootstrapping captures uncertainty in the dataset and, for any learning algorithm, generates reliable feature 
subsets that outperforms the benchmark at the cost of sampling. Number of bootstraps plays a crucial role and smart adaptive sample size 

selection significantly improves the optimal results.

Why Feature Selection?
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What can go wrong with current feature selection methods?

Best ! (method) # contributing feat. # redundant feat. # uninform. 
feat.
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• %& = (&, *& ~,% are given data points;
• (& = -&., … , -&

0 features, 
• ! = (2., … , 20) !4 = {0,1},
• 9&, P& ⊆ {1,2, … , % } index of points in bootstrap,
• =(!′(|%) a prediction model, 
• @(= !A( % , B) deviation of predicted from observed.
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We used these configurations for our numerical experiments:

Does choice of M make a difference?
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Best ! (method) # features IS performance 
est.

OOS performance 
est.

"N(without FS) 20 128 367
"# (Benchmark) 6 173 176

Problem Statement

Bootstraps 1 2 … O
training 9. … 9P

testing P. … PP

CRN
Estimate F(!) with 

QFR ! = ST.U
&

@(= !A(%(VW) % 9& , B%(VW))

9&, P& ≔ 9 Y& , Z Y&
Y&~[S\F[0,1]

100

• = !A(%(_W) %(9&)

• Decide S(2)
@& = !A(% VW % 9& , B% VW QFR !

Solver:
!. !` … !a

Stochastic Error

Deterministic Error

!

Our Framework

How do we choose M?

• S makes a difference and 
• beats benchmark in:
• Sharpness
• Accuracy

• No monotone relationship
• Very time consuming

Increase S from lower bound ℓ c
until no further improvements in the 
upper confidence level

• Solver : Genetic Algorithm à tuned parameters 
• Learning Algorithm r . : LM, RF à tuned parameters for RF
• Sampling rule: 
• Lower bound ℓ c = min

R
3 + c/100 , 7 , 

• CI width α c = -RT.,.L`k
• Benchmark: Recursive Feature Elimination,
• Datasets: 2 real data, 1 simulated (#features range (56,221)),
• Performance Measure Q . : mean squared error.
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Conclusion and Future Work

! good solution for any class of learning 
algorithms;

" effective sampling rules that adapt to 
incumbent variability (with bootstraps)

# increased reliability:
ü more accurate solutions (accuracy),
ü less variable solutions (sharpness);

$ better identifying important features.

What needs attention: What’s promising: 

% large S possibly makes things worse;

% finding structure reduces dimension 
and makes integer SO solvers 
applicable;

% combining sampling and solver 
tailors search to dataset’s 
characteristics, by using info from 
previously visited solutions.

Novel framework: selecting features with adaptive sampling simulation optimization. 
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! often chosen with greedy search and cross-validation but it can poorly evaluate the 
performance


