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Finding the most informative features in the big data applications
Improve predictions and

challenge that can
underlying systems.

Due to the uncertainty

IS a
interpretability of the

iIn the data, we formulate this problem

stochastically, which is generalizable for any learning algorithm of
choice. The resulting feature subsets are more robust to the changes in
the data and lead to better predictions in simulated and real datasets.

{@}Problem Statement:

/min f(x):=Ep-p [IEDO~pO[QDO(TD(Z,x);y)]]\

x€{0,1}
Out-of-sample Dy~P,
In-sample D~P

« P, and P are the unknown data distributions, which
introduce the input uncertainty to the model.

« D ={< z,y; >}; is the dataset on hand, where z; is a p-
dimensional variable.

e x=(x}..,xP) x; = {0,1}

* 1p(z,x) is a prediction model
Qp,(1p(z,x),y) is the deviation of predicted from observe(y

@ How does SOFS(B, R) perform?

Q Datasets:

@CMS dataset with binary

response (zero-inflated with 9%
non-zero), 19k instances and 380
features.

@ Prediction of unplanned
admission due to heart failure, in
the following month.

\
eSimulated dataset with '\

continuous response, 300
instances and 220
features; where real
variables~Gamma(2,2).
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Macro-replication

Q Better performance in: Accuracy

@ Changing the
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