NC STATE UNIVERSITY

Problem

farms wind turbines' downstream efficiency is lower due to the wake effect.

lensen's wake model introduces unknown parameters like the wake decay coefficient (θ).

calibration Parameter aims to find a suitable parameter value, wellinformed data by uncertainty.

Fig 1: Computer model parameter calibration.

- In the literature, Bayesian calibration has been widely used, but it has limitations in handling large scale data.
- We cast calibration problem with stochastic optimization algorithms to handle big data.

Data-driven Stochastic Optimization

Suppose we have $\langle x_i, y_i \rangle = 1, ..., n$ data points, where x_i is some characteristic of the wind (speed, intensity) and y_i is the observed generated power from the turbines. We seek

$$\min_{\theta \in [\theta_{\min}, \theta_{\max}]} f(\theta) \coloneqq \mathbb{E}_{X,Y}[\ell(y^{c}(\theta; X), Y)]$$

The loss function is $\ell(y^c(\theta; X), Y) \coloneqq \|y^c(\theta; X) - Y\|_1$.

Estimated objective is

$$F(\theta, \mathcal{S}(\theta)) = \frac{1}{|\mathcal{S}(\theta)|} \sum_{\langle x_j, y_j \rangle \in \mathcal{S}(\theta)} \ell(y^c(\theta; x_j), y_j)$$

Optimization is **derivative-free** with the main assumptions: - $F(\theta, S(\theta)) \xrightarrow[n \to \infty]{} f(\theta)$ almost surely for all θ .

- $f(\theta)$ is bounded below and continuously differentiable with Lipschitz continuous gradients for all θ .
- The parameter θ is independent of x_i 's.

Wake Effect Calibration in Wind Power Systems with Adaptive Sampling based Optimization

Pranav Jain, Dr. Sara Shashaani, North Carolina State University,

Dr. Eunshin Byon, University of Michigan, Ann Arbor

Methodology

 $, y_j).$

We use **Trust-region**, an iterative method that approximates $f(\theta)$ by

- a local model that suggests the 1.5 next step in a Δ_k –neighborhood around current best solution θ_k ;
- its derivative-free version builds model on several θ 's near θ_k .

Fig 2: Trust-region optimization in \mathbb{R}^2 .

Benefits over Bayesian Calibration:

- response surface over *f* instead of *Y* is faster and has more details,
- models are iteratively updated,
- search direction is driven by updating the trust-region and model.

Adaptive sampling

- use a subset of data at each iteration to relieve computational burden,
- determine sample size adaptively at each solution; more samples estimation error large relative to the optimization error.

Optimality gap at θ

Stratified sampling

- further reduce the variance by allocating portions of the total points to the strata with higher variance.

- Sample size of stratum *i*: $n_i(\theta) \coloneqq [w_i(\theta) \times n(\theta)]$. - Weight of stratum *i*: $w_i(\theta) = \frac{p_i \hat{\sigma}_i(\theta)}{\sum_{l=1}^{I} p_l \hat{\sigma}_l(\theta)}$. What $\hat{\sigma}_i(\theta)$ to use here?

- effective parameter calibration.
- solutions with lower variability.

Sara Shashaani, Fatemeh S Hashemi, and Raghu Pasupathy. ASTRO-DF: A class of adaptive sampling trust-region algorithms for derivative-free stochastic optimization. SIAM Journal on Optimization, 28(4): 3145–3176, 2018.

Method (a)
Method (c) Method (d)

(c): Weights via **output** variance $\hat{\sigma}_{Y}, \Delta n = \boldsymbol{b}$ (d): Weights via **loss** variance $\hat{\sigma}_F$, $\Delta n = \boldsymbol{b}$

Table 1: 4 sampling schemes determine how to sample points using adaptive and stratified sampling.

- Weights via $\hat{\sigma}_Y$ lead to higher accuracy compared to via $\hat{\sigma}_F$. - Increasing samples in batches can be more efficient.

Conclusions

Compared to Bayesian approach, trust-region approach builds local model. Construction of local models are driven via optimization structure. Thus, it can capture the local variations better, leading to

- Combination of adaptive and stratified sampling gives robust

References

- Bingjie Liu, Matthew Plumlee, and Eunshin Byon. Data-driven parameter calibration in wake models. In 2018 Wind Energy Symposium, 2018.