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Problem

In the wind farms
downstream turbines’
efficiency is lower due to
the wake effect.

Jensen’s wake model
introduces unknown
parameters like the wake
decay coefficient (:).

Parameter calibration
aims to find a suitable
parameter value, well-
informed by data
uncertainty.

Methodology

Benefits over Bayesian Calibration:

Stratified sampling
- further reduce the variance by allocating portions of the total points
to the strata with higher variance.

- Sample size of stratum F: GH : ≔ JH : ×G : .
- Weight of stratum F: JH : = NOPQO R
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. What XYH θ to use here?
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Data-driven Stochastic Optimization
Suppose we have < _a, \a > c = 1,… , G data points, where _a is some
characteristic of the wind (speed, intensity) and \a is the observed
generated power from the turbines. We seek

min
f∈[fijk,film]

o : ≔ pq,r[ℓ(\] :; t , u)] .

The loss function is ℓ \] :; t , u ≔ \] :; t − u x.

Estimated objective is
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ℓ \] :; _a , \a .

Optimization is derivative-free with the main assumptions:
- { :, | :

Ö→á
o : almost surely for all :.

- o : is bounded below and continuously differentiable with
Lipschitz continuous gradients for all :.
- The parameter : is independent of _a’s.

Conclusions

- Weights	via	 XYr lead	to	higher	accuracy	compared	to	via	 XYä.
- Increasing	samples	in	batches	can	be	more	efficient.
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Fig	2:	Trust-region	optimization	in	ℝé.

Fig 4: Stratified sampling using a one-dimensional variable.

Fig 1: Computer model parameter calibration.

- Compared to Bayesian approach, trust-region approach builds local
model. Construction of local models are driven via optimization
structure. Thus, it can capture the local variations better, leading to
effective parameter calibration.

- Combination of adaptive and stratified sampling gives robust
solutions with lower variability.

We use Trust-region, an iterative
method that approximates o : by
- a local model that suggests the
next step in a Δí −neighborhood
around current best solution :í;

- its derivative-free version builds
model on several :’s near :í.

- response surface over o instead of u is faster and has more details,
- models are iteratively updated,
- search direction is driven by updating the trust-region and model.

- In the literature, Bayesian calibration has been widely used, but it
has limitations in handling large scale data.

- We cast calibration problem with stochastic optimization algorithms
to handle big data.

(a): Weights via output
variance XYr, ìG = î

(c): Weights via output
variance XYr, ìG = ï

(b): Weights via loss
variance XYä, ìG = î

(d): Weights via loss
variance XYä, ìG = ï

Adaptive sampling
- use a subset of data at
each iteration to relieve
computational burden,

- determine sample size
adaptively at each
solution; more samples
if estimation error
large relative to the
optimization error. Fig	3:	Error	changes	with	sample	size	

increase	and	stopping	of	adaptive	sampling.

Table 1: 4 sampling
schemes determine how
to sample points using
adaptive and stratified
sampling.


