Poster #59

IMPROVED FEATURE SELECTION WITH SIMULATION OPTIMIZATON

PRESENTER: Sara Shashaani

EDWARD P. FITTS DEPARTMENT OF

Why not include all features in the model? • Overfitting

- Computationally expensive
- Less inference or interpretation power

Research Methodology

Given a learning model (linear regression, random forest, etc.) we look for the best subset of features

 $S^* = argmin_S \sum_{i \in V} (f_{M,A,S}(x_i) - y_j)^2$

where $f_{M,A,S}(x_i)$ is the prediction model trained by the subset S of features of the learning set M with the learning algorithm A.

Estimate with its Sample Average Approximation

 $\hat{S}^{*} = argmin_{S} \frac{1}{n} \sum_{i=1}^{n} \sum_{j \in M_{i}^{c}} (f_{M_{i},A,S}(x_{j}) - y_{j})^{2}$

where *Mi* and M_i^c are resampled training and test sets within the learning set *M*.

Experiment

We compare the performance of Simulation Optimization based Feature Selection SOFS with Genetic Algorithms as the optimization method

- in terms of mean absolute and squared error;
- with that of *Recursive Feature Elimination* (*RFE*), the commonly used greedy approach that looks for the best subset size

 $d^{*} = argmin_{d} \frac{1}{n} \sum_{i=1}^{n} \sum_{j \in M_{i}^{c}} (f_{M_{i},A,d}(x_{j}) - y_{j})^{2};$

- on a sample dataset from UCI repository with 55 features and 226 observations;
- on a two learning algorithms: linear regression (LM), and random forest (RF).

Sara Shashaani, Kimia Vahdat Industrial and Systems Engineering North Carolina State University

When looking in a dataset with many features for the most informative ones, we can develop an optimization problem that estimates the predictive accuracy of a prediction model with any subset of features by mimicking a simulation of the system under consideration, for which we only have the available data, through resampled datasets.

Results ·						
RFE vs	. S(
	F					
LIVI	(
DE	F					
KF	(

Conclusion

- One replication

DFS	# Feat	IS MAE	OS MAE	IS MSE	OS MSE	Time
RFE	33	2.44	3.45	11.92	22.56	•
ĴΑ	27	2.38	3.17	11.62	19.58	•
RFE	10	2.87	3.49	15.15	22.15	0.30
ĴΑ	9	2.79	3.44	14.35	21.98	1015.56

- SOFS gains higher accuracy in predictions and more precision in number of features for both LM and RF.

- The optimization routine GA is only run for a limited budget so in RF it can stop before convergence. More efficient optimization routines are under study.

NC STATE UNIVERSITY

CACHEComputer Aids for
Chemical Engineering